180 resultados para Traumatic stress
Resumo:
Results of photoelastic investigation conducted on annulii containing a radial crack at inner edge and subjected to diametrical tension are reported. The cracks are oriented at 90°, 60° and 45° to the loading direction. The Stress-Intensity Factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a modified method developed earlier by the authors (to be published) were adopted in the evaluation of SIFs.
Resumo:
Results of photoelastic investigations conducted on cylindrical tubes (made of Araldite material) containing cracks oriented at 0°, 30°, 45°, 60° and 90° to the axis of the tube and subjected to axial and torsional loads are reported. The stress-intensity factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a new method developed by the authors by modifying Rakesh et al.'s method [Proc. 26th Congress of ISTAM, India (1981)] were employed to evaluate the mixed-mode SIFs.
Resumo:
During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (Sigma 70), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of Sigma 70 is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With themelucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse hese mechanisms in a collective manner. We review the recent trends in understanding the regulation of Sigma 70 by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of Sigma 70 activity in E. coli.
Resumo:
We report measurements of the wall stress in a granular material sheared in a cylindrical Couette cell, as a function of the distance from the free surface. Our results shows that when the material is static, all components of the stress saturate to constant values within a short distance from the free surface, in conformity with earlier experiments and theoretical predictions. When the material is sheared by rotating the inner cylinder at a constant rate, the stresses are remarkably altered. The radial normal stress does not saturate, and increases even more rapidly with depth than the linear hydrostatic pressure profile. The axial shear stress changes sign on shearing, and its magnitude increases with depth. These results are discussed in the context of the predictions of the classical and Cosserat plasticity theories.
Resumo:
Beams with a central edge crack, as well as other noncentral vertical and inclined edge cracks distributed symmetrically, subjected to three-point as well as four-point bending, are analysed using the finite element technique. Values of stress intensity factor K1 at the central crack tip for a crack-to-beam depth ratio Image equal to 0.5, are calculated for various cracked-beam configurations, using the compliance calibration technique as well as method of strain energy release rate. These are compared with the value of K1 for the case of a beam with central edge crack alone. Results of the present parametric study are used to specify the range of values pertaining to basic parameters such as crack-to-beam depth ratios, geometry and position with respect to central edge crack, of other macrocracks for which interaction exists. Accordingly, the macrocracks are classified as either interacting or noninteracting types. Hence for noninteracting types of cracks, analytical expressions available for the determination of K1 in the case of beam with a central edge crack alone, are applicable.
Resumo:
A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.
Resumo:
The properties of thin films depend to a large extent upon their mechanical stability which in turn is dependent on the intrinsic stresses developed during evaporation. This paper describes a simple method for the measurement of stresses in thin films by the use of real-time holographic interferometry.
Resumo:
The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.
Resumo:
Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.
Resumo:
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.
Resumo:
Surface elastic strain field generated in conical indentation of sintered alumina clay composite was measured to verify the suitability of a superposed combination of Boussinesq and blister stress fields, used previously for analysing the indentation problem. The residual strain measured in the elastic hinterland is used to estimate the blister field strength without any reference to stress relation within that field. The approach may be useful in fracture studies of brittle materials.