257 resultados para Theoretical density
Resumo:
We report a detailed and full computational investigation on the hydrovinylation reaction of styrene with the Ni(II)-phospholane catalytic system, which was originally presumed to proceed through a cationic mechanism involving a nickel hydride intermediate. The following general features emerge from this study on a specific catalyst complex that was found to give quantitative yield and moderate selectivity: (a) the activation barrier for the initiation (18.8 kcal/mol) is higher than that for the reaction due to a low-lying square-planar pentenyl chelate intermediate originating from a Ni(II)-allyl catalyst precursor. Consequently there is an induction period for the catalysis; (b) the exit of product from the catalyst is via a β-H-transfer step instead of the usual β-H elimination pathway, which has a very high activation energy due to a trans effect of the phospholane ligand; (c) the turnover-limiting and enantio- determining transition state is also the β-H-transfer; (d) because of the absence of a hydride intermediate, the unwanted isomerization of the product is prevented; (e) since the enantio-discrimination is decided at the H-transfer stage itself, the configuration of the product in a catalytic cycle influences the enantioselectivity in the subsequent cycle; (f) the trans effect of the sole strong ligand in the d8 square-planar Ni(II), the stability of the η3-benzyl intermediate, and the availability of three coordination sites enable regioselective hydrovinylation over the possible oligomerization/polymerization of the olefin substrates and linear hydrovinylation. This work has also confirmed the previously recognized role of the hemilabile group at various stages in the mechanism.
Resumo:
The stability characteristics of Alfvén Internal gravity waves for an inviscid, nondissipative, Boussinesq fluid undergoing shear in the presence of a density discontinuity with and without a rigid boundary is studied.
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of beta -turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II beta-turn conformations are about 2 kcal mol-1 more stable than Type III structures. A crystallographic study has established the Type II beta-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, beta = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II -turn conformation is stabilized by an intramolecular 4 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are Pro = -57.8°, Pro = 139.3°, Aib = 61.4°, and Aib = 25.1°. The Type II beta-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.
Resumo:
Theoretical optimization studies of the performance of a combustion driven premixed two-phase flow gasdynamic laser are presented. The steady inviscid nonreacting quasi-one-dimensional two-phase flow model including appropriate finite rate vibrational kinetic rates has been used in the analysis. The analysis shows that the effect of the particles on the optimum performance of the two-phase laser is very small. The results are presented in graphical form. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Abstract is not available.
Resumo:
The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.
Resumo:
We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is of the order of x=v/(2 omega), where v is the plasmon velocity and omega is the bias frequency. Beyond this distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing the junction. This finite range of distances opens up the possibility of experimentally probing the enhancement in each wire individually.
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
The probable modes of binding of Methyl--alpha (and beta)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that beta-MeGlcP can bind to ConA in three different modes whereas alpha-MeGlcP can bind only in one mode. beta-MeGlcP in its most favourable mode of binding differs from alpha-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the alpha-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-alpha-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-alpha-D-glycopyranoside. These studies suggest that the increased activity of the alpha-MeGlcP over beta-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.
Resumo:
A formulation has been developed using perturbation theory to evaluate the π-contribution to the nuclear spin coupling constants involving nuclei at least one of which is an unsaturated center. This fromulation accounts for the π-contribution in terms of the core polarization and one-center exchange at the π-center. The formulation developed together with the Dirac vector model and Penney-Dirac bond-order formalisms was employed to calculate the geminal (two-bond) proton coupling constants of carboxyl carbons in α-disubstituted acetic acids. The calculated coupling constants were found to have an orientational dependence. The results of the calculation are in good agreement with the experimental values.
Resumo:
In the systematic study of amine … LiCl [amines = NH3, CH3NH2, (CH3)2NH] complexes the possibility of an ion-pair structure and the effect of methylation on the stabilization energy is investigated. ΔEis evaluated by the SCF/4-31G method and augmented by the approximate dispersion energy calculated perturbationally. The interaction energy decreases with the increasing number of methyl groups in the amine. The dispersion energy plays a negligible role in the stabilization of complexes. None of the systems studied are ion pairs; their Li bonds are of a so-called molecular type. Due to the divergence of the multipole expansion, the attempt to correct the 4-31G stabilization energies via the electrostatic energy fails. The relative order of the ΔE in the series of complexes is verified instead in the extended basis set calculation. The lithium bonds are compared with their H-bonded analogues.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
A theoretical analysis of the Gifford-McMahon cycle is presented. Expressions for the ideal refrigeration produced and the figure of merit are developed. Various losses occurring in a real machine are considered and equations to account for these losses are derived. Results are presented in graphical form.
Resumo:
The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.
Resumo:
The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.