202 resultados para Randomly amplified polymorphic DNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mxr1p (methanol expression regulator 1) functions as a key regulator of methanol metabolism in the methylotrophic yeast Pichia pastoris. In this study, a recombinant Mxr1p protein containing the N-terminal zinc finger DNA binding domain was overexpressed and purified from E coli cells and its ability to bind to promoter sequences of AOXI encoding alcohol oxidase was examined. In the AOXI promoter, Mxr1p binds at six different regions. Deletions encompassing these regions result in a significant decrease in AOXI promoter activity in vivo. Based on the analysis of AOXI promoter sequences, a consensus sequence for Mxr1p binding consisting of a core 5' CYCC 3' motif was identified. When the core CYCC sequence is mutated to CYCA, CYCT or CYCM (M = 5-methylcytosine), Mxr1p binding is abolished. Though Mxr1p is the homologue of Saccharomyces cerevisiae Adr1p transcription factor, it does not bind to Adr1p binding site of S. cerevisiae alcohol dehydrogenase promoter (ADH2UAS1). However, two point mutations convert ADH2UAS1 into an Mxr1p binding site. The identification of key DNA elements involved in promoter recognition by Mxr1p is an important step in understanding its function as a master regulator of the methanol utilization pathway in P. pastoris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of interaction of palladium(II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of copper-thiosemicarbazide complexes with DNA was investigated using ultraviolet and infrared spectroscopy. Evidence for the interaction of the complexes with nucleic acid bases and with the phosphate group is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new ternary copper(II) complexes of alpha-amino acid having polypyridyl bases of general formulation [Cu(L-ala)(B)(H2O)](X)(1-4), where L-ala is L-alanine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) and 5,6-phenanthroline dione (dione, 3), dipyrido[3,2:2',3'-f] quinoxaline (dpq, 4), and X = ClO4-/NO3- are synthesized, characterized by various spectroscopic and X-ray crystallographic methods. The complexes show a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. The one-electron paramagnetic complexes (1-4) display a low energy d-d band near 600 nm in aqueous medium and show a quasi-reversible cyclic voltammetric response due to one-electron Cu(II)/Cu(I) reduction near - 100 mV (versus SCE) in DMF-0.1 M TBAP. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. All the complexes barring the complexes 1 and 3 are avid binder to the CT-DNA in the DNA minor groove giving an order: 4 > 2 >>>1, 3. The complexes 2 and 4 show appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent. Hydroxyl radical was investigated to be the DNA cleavage active species. Control experiments in the presence of distamycin-A show primarily minor groove-binding propensity for the complexes 2 and 4 to the DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conformationally locked tetraacetate undergoes, quite akin to a temperature-guided molecular switch, a reversible thermal switching between two polymorphic modifications; the room-temperature alpha-form converted at -4 degrees C to a low-temperature denser beta-form, which displayed an unusual kinetic stability till 67 degrees C and transformed back to the alpha-form beyond this temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Fluoro-2'-deoxyuricine is incorporated into DNA of mouse breast tumour Image . The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. FUra, 5-Fluorouracil; FdUR, 5-Fluoro-2'-deoxyuridine; FdUMP, 5-Fluoro-2'-deoxyuridine-5'-monophosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report cloning of the DNA encoding winged bean basic agglutinin (WBA I). Using oligonucleotide primers corresponding to N- and C-termini of the mature lectin, the complete coding sequence for WBA I could be amplified from genomic DNA. DNA sequence determination by the chain termination method revealed the absence of any intervening sequences in the gene. The DNA deduced amino acid sequence of WBA I displayed some differences with its primary structure established previously by chemical means. Comparison of the sequence of WBA I with that of other legume lectins highlighted several interesting features, including the existence of the largest specificity determining loop which might account for its oligosaccharide-binding specificity and the presence of an additional N-glycosylation site. These data also throw some light on the relationship between the primary structure of the protein and its probable mode of dimerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhedral bodies of Bombyx mori nuclear polyhedrosis virus, BmNPV (BGL) isolated from infected silkworms around Bangalore were propagated either in the cultured B. mori cell line, BmN or through infection of larvae. Electron microscopic (EM) observations of the polyhedra revealed an average length of 2 mu m and a height of 0.5 mu m. The purified polyhedra derived virions (PDV) showed several bands in sucrose gradient centrifugation, indicating the multiple nucleocapsid nature of BmNPV. Electron microscopic studies of PDV revealed a cylindrical, rod-shaped nucleocapsid with an average length of 300 nm and a diameter of 35 nm. The genomic DNA from the PDV was characterized by extensive restriction analysis and the genome size was estimated to be 132 kb. The restriction pattern of BmNPV (BGL) resembled that of the prototype strain BmNPV-T3. Distinct differences due to polymorphic sites for restriction enzyme HindIII were apparent between BmNPV (BGL) and the virus isolated from a different part of Karnataka (Dharwad area), BmNPV (DHR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids.Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis.