136 resultados para Partial oxidation of methane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation rate of a cuprous sulfide pellet suspended in a stream of air was followed by measuring the evolution of SO2 titrimetrically. Thin thermocouples embedded in the center of the sample recorded the variation of temperature during oxidation. The reaction was found to be topochemical and the sample temperature was found to be higher than its surroundings initially for about half an hour. After this initial period, the sample temperature decreased to that of the surroundings and remained constant during the rest of the period of over 5 hr. The apparent activation energy from the experimental data was found to be different for the initial (nonisothermal) and subsequent (isothermal) periods. Rate controlling mechanisms for these two intervals have been proposed based on interface chemical reaction, mass transfer resistance, and heat transfer concepts. Fair agreement is found between the theoretical rates based on transport mechanisms and those obtained experimentally

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloramine-T has been found to bring about the rupture of S-S link in polythionates in acid medium and oxidise all the sulphur present in the chain into sulphuric acid. Quantitative estimation of a polythionate may be made on the basis of this oxidation reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard molar Gibbs free energy of formation of Co2TiO4, CoTiO3,and CoTi2O5 as a function of temperature over an extended range (900 to 1675) K was measured using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte, with CoO as reference electrode and appropriate working electrodes. For the formation of the three compounds from their component oxides CoO with rock-salt and TiO2 with rutile structure, the Gibbs free energy changes are given by:Delta(f)G degrees((ox))(Co2TiO4) +/- 104/(J . mol(-1)) = -18865 - 4.108 (T/K)Delta(f)G degrees((ox))(CoTiO3) +/- 56/(J . mol(-1)) = -19627 + 2.542 (T/K) Delta(f)G degrees((ox))(CoTi2O5) +/- 52/(J . mol(-1)) = -6223 - 6.933 (T/K) Accurate values for enthalpy and entropy of formation were derived. The compounds Co2TiO4 with spinel structure and CoTi2O5 with pseudo-brookite structure were found to be entropy stabilized. The relatively high entropy of these compounds arises from the mixing of cations on specific crystallographic sites. The stoichiometry of CoTiO3 was confirmed by inert gas fusion analysis for oxygen. Because of partial oxidation of cobalt in air, the composition corresponding to the compound Co2TiO4 falls inside a two-phase field containing the spinet solid solution Co2TiO4-Co3O4 and CoTiO3. The spinel solid solution becomes progressively enriched in Co3O4 with decreasing temperature. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical oxidation of borohydride is studied on nanosized rhodium, iridium, and bimetallic rhodium-iridium catalysts supported onto Vulcan XC72R carbon. The catalysts are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy in conjunction with cyclic voltammetry and polarization studies. The studies reveal that a 20 wt % bimetallic Rh-Ir catalyst supported onto carbon (Rh-Ir/C) is quite effective for the oxidation of borohydride. Direct borohydride fuel cell with Rh-Ir/C as the anode catalyst and Pt/C as the cathode catalyst exhibits a peak power density of 270 mW/cm(2) at a load current density of 290 mA/cm(2) as against 200 mW/cm(2) at 225 mA/cm(2) for Rh/C and 140 mW/cm(2) at 165 mA/cm(2) for Ir/C while operating at 80 degrees C. The synergistic catalytic activity for the bimetallic Rh-Ir nanoparticles toward borohydride oxidation is corroborated by density-functional theory calculations using electron-localization function. (C) 2010 The Electrochemical Society. [DOI:10.1149/1.3442372] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of representative halophenols and halonaphthols by peroxidisulphate has been examined. The influence of metallic ions, viz. Cu2+, Fe3+, Ag+, on the above reaction has been studied. Cu2+ ion-catalyzed oxidation gives halo-1, 4-quinones in excellent yield. Potassium bis(biureto)cuprate(III) complex also oxidises halophenols to halo-1, 4-quinones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-phase homogeneous catalytic oxidation of styrene with Wilkinson complex by molecular oxygen in toluene medium gave selectively benzaldehyde and formaldehyde as the primary products. Higher temperatures and styrene conversions eventually led to acid formation due to co-oxidation of aldehyde.A reaction induction period and an initiation period, typical of free-radical reactions, characterized the oxidation process. The effects of temperature and catalyst and styrene concentrations on the conversion of styrene to benzaldehyde and acid formation have been studied. The optimum reaction parameters have been determined as a styrene-to-solvent mole ratio of 0.5, a catalyst-to-styrene mole ratio of 5.0 X lo4, and a reaction temperature of 75 "C. A reaction scheme based upon free-radical mechanism yielded a pseudo-first-order model which agreed well with the observed kinetic data in the absence of co-oxidation of aldehyde. A second-order model was found to fit the experimental data better in the case of aldehyde conversion to acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1,2-shift observed during oxidation of organic substrates can arise by involvement of cation radicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a theoretical model for the growth of titanium oxide by thermal oxidation of titanium. It is shown that this model can explain the formation of layers of different oxides of titanium and the changes in these layers with variations in the conditions of oxidation. Some experimental X-ray diffraction results which support the model are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme. On a étudié la cinétique de l'oxydation, en phase gazeuse, du para-xylène sur un catalyseur consistant en molybdate ferrique; cette oxydation s'est faite dans un réacteur à écoulement tubulaire, isothermique et différentiel, dans une échelle de températures comprises entre 360°C et 420°C. Le produit principal obtenu a été le para-tolualdéhyde; on a aussi trouvé de faibles quantités d'anhydride maléique et d'acide para-toluique, mais on n'a pas noté la présence d'acide téréphtalique ni d'anhydride carbonique (CO2). Les résultats obtenus en ce qui a trait à la vitesse de réaction concordent bien avec les données du modèle redox indiquées par l'équation 1. Les valeurs des énergies d'activation Ex et Eo ainsi que des facteurs de fréquence Ax et Ao obtenus sont respectivement 72 et 63 kilojoules/mol. et 0.64 × 103 et 2.89 m3/kg de catalyseur. On a établi le mécanisme de la réaction en étudiant l'oxydation du para-tolualdéhyde et des acides toluique et téréphtalique. On conclut que la réaction se fait d'une manière parallèle et consécutive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The titled reagent incorporates an oxygen-centred nucleophile and a basic moiety�in a suitably mutual orientation�in the same molecule. It oxidises various primary benzylic bromides to the corresponding aromatic aldehydes under relatively mild conditions (MeCN/rt�50°C/6�24 h) in high yields (83�97%), and is thus a useful alternative to the Kornblum procedure.