248 resultados para Nitrite oxidation inhibitor
Resumo:
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Resumo:
The impurity profile for the second oxidation, used in MOST fabrication, has been obtained by Margalit et al. [1]. The disadvantage of this technique is that the accuracy of their solution is directly dependent on the computer time. In this article, an analytical solution is presented using the approximation of linearizing the second oxidation procedure.
Resumo:
Exposure of rats to hypobaric stress for periods of up to 36 h caused a consistent change in the succinate-NT reductase activity of the heart mitochondria whereas there was no significant change in the activities of either succinate dehydrogenase and succinate-NT reductase of the brain and the kidney. Mitochondrial succinate dehydrogenase of the heart, the brain and the kidney was activated 2- to 7-fold with the substrate and malonate. The activations obtained with oxalate, citrate and dinitrophenol were relatively lower in comparison to succinate and malonate. Benzohydroquinone and 2-nitrophenol had no stimulatory effect on the heart, the brain and the kidney mitochondria. THE ACTIVATIONS OBTAINED WITH THE VARIOUS EFFECTORS PARTIALLY (OR COMPLETELY IN THE CASE OF SUCCINATE) REVERSED ON WASHING THE MITOCHONDRIAL SAMPLES WITH THE SUCROSE HOMOGENIZING MEDIUM. The effect of ubiquinol, which also activated the enzyme, was only partially reversed after the second preincubation with succinate in the brain and the kidney whereas in the heart the activity was fully reversed. The increased activity of succinate dehydrogenase obtained with ATP and ADP was further enhanced by Mg2+ exclusively in the brain mitochondria, suggesting the possibility of Mg2+-AIP complex as the active species. Succinate-NT reductase of the heart, the brain and the kidney mitochondria showed a high activation with ubiquinone whereas its reduced form had no stimulatory effect.
Resumo:
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.
Resumo:
Surface oxidation of three metglasses in the Cu-Zr system has been investigated by employing X-ray photoelectron spectroscopy and Auger electron spectroscopy with a view to comparing their oxidation behaviour with that of the corresponding crystalline states of the alloys. Surface oxidation of pure Zr metal has also been examined in detail using these techniques. Sub-oxides of Zr are formed during the initial stages of oxidation of Zr (at oxygen exposures <10L), while at higher exposures, ZrO2 is formed together with the highest possible sub-oxide which the authors designate as 'ZrO'. The relative proportion of 'ZrO' goes through a maximum in the range 25-50 L. Both the glassy and the crystalline states of the Cu-Zr alloys exhibit preferential oxidation of Zr. The glassy alloys exhibit a higher rate of oxidation at intermediate exposures compared with the crystalline states of the alloys; the extent of oxidation at higher oxygen exposures is, however, higher for crystalline alloys. Interatomic Auger transitions have been found in the Zr+O2 system as well as in Cu-Zr alloys.
Resumo:
Molecular oxygen (012) i8 eatabliehed to be a good electrophile' and haabean Pound to yield many interesting moleculae upon reaction with olefinic, aromatic and other mu1 tipla bonded compounda. Although, oxidation of carbon ulphur double bond (thiones) by air her bean know for a longtime, nai the r the aechaniam nor the reactive species involved in theae oxidationa have bean etabliahodo Although there is no clear experimental verification, involvement of malecular oxygen in such types of oxidationa oP activated thiocarbonyl coc pounds has been recently auggeetad.4.
Resumo:
1. Cell-free extracts of Arthrobacter synephrinum catalyse the oxidation of 3,4-dihydroxy-phenylacetate. 2. The product of oxidation was characterized as 2-hydroxy-5-carboxymethylmuconate semialdehyde from its chemical behaviour as well as from nuclear-magnetic-resonance spectra. 3. A 3,4-dihydroxyphenylacetate 2,3-dioxygenase (EC 1.13.11.15) was partially purified from A. synephrinum. 4. The enzyme had a Km of 25 micrometer towards its substrate and exhibited typical Michaelis-Menten kinetics. 5. The enzyme also catalysed the oxidation of 3,4-dihydroxymandelate and 3,4-dihydroxyphenylpropionate, at reaction rates of 0.5 and 0.04 respectively of that for 3,4-dihydroxyphenylacetate. 6. The enzyme was sensitive to treatment with thiol-specific reagents. 7. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography was approx. 282000.
Resumo:
The kinetics of pseudocumene oxidation in the vapor phase with tin vanadate as catalyst have been studied over the following ranges of the variables: Oxygen concentration, 0.909 to 2.857 mole/m3; pseudocumene concentration, 0.071 to 0.125 mole/m3; temperature, 260 to 320°C; space time, 22.5 to 90 × 104 g. catalyst/mole sec. Oxidation-reduction models have been found to describe the kinetics adequately. The mechanism is found to remain the same throughout the temperature range covered.
Resumo:
Ethanol oxidation in the vapor phase was studied in an isothermal flow reactor using thorium molybdate catalyst in the temperature range 220–280 °C. Under these conditions the catalyst was highly selective to acetaldehyde formation. The rate data were well represented by a steady state two-stage redox model given by the equation: View the MathML source The parameters of the above model were estimated by linear and nonlinear least squares methods. In the case of nonlinear estimation the sum of the squares of residuals decreased. The activation energies and preexponential factors for the reduction and oxidation steps of the model, estimated by nonlinear least squares technique are: 9.47 kcal/mole, 9.31 g mole/ (sec) (g cat) (atm) and 9.85 kcal/mole, 0.17 g mole/(sec) (g cat) (atm)0.5, respectively. Oxidations of ethanol and methanol over thorium molybdate catalyst were compared under similar conditions.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
Rates of oxidation of p-xylene were measured in the temperature range 320 to 420 °C using tin vanadate as catalyst in an isothermal differential flow reactor. The amounts of p-xylene converted were determined by analyzing the main products (p-tolualdehyde, maleic anhydride, p-toluic acid and traces of terephthalic acid). Negligible amounts of products of complete combustion were formed. The reaction rates obtained for p-xylene followed the relation, Image based on the redox model. The mechanism of the reaction was determined by conducting different sets of experiments and it was found that the reaction followed the parallel-consecutive mechanism, in which p-tolualdehyde and maleic anhydride were formed from the parallel route whereas p-toluic acid was formed from the consecutive route.
Resumo:
Polyvanadate solutions obtained by extracting vanadium pentoxide with dilute alkali over a period of several hours contained increasing amounts of decavanadate as characterized by NMR and ir spectra. Those solutions having a metavanadate:decavanadate ratio in the range of 1-5 showed maximum stimulation of NADH oxidation by rat liver plasma membranes. Reduction of decavanadate, but not metavanadate, was obtained only in the presence of the plasma membrane enzyme system. High simulation of activity of NADH oxidation was obtained with a mixture of the two forms of vanadate and this further increased on lowering the pH. Addition of increasing concentrations of decavanadate to metavanadate and vice versa increased the stimulatory activity, reaching a maximum when the metavanadate:decavanadate ratio was in the range of 1-5. Increased stimulatory activity can also be obtained by reaching these ratios by conversion of decavanadate to metavanadate by alkaline phosphate degradation, and of metavanadate to decavanadate by acidification. These studies show for the first time that both deca and meta forms of vanadate present in polyvanadate solutions are needed for maximum activity of NADH oxidation.
Resumo:
Oxidation of spiroketones 3a–f with DDQ in dry benzene gave tropone derivatives 4a–f and DDHQ esters 5a–f (cis -cis isomer 6a–f, (cis -cis isomer 7a–f). While the aryl substituted spirokeone 17a gave a 2:1 mixture of 19a and the corresponding trans -trans isomer, the aryl substituted spiroketones 17b–d gave exclusively trans-trans isomers 19b–d. Heating acid chloride of acid 9c with DDHQ resulted in compounds 4a and 7a, thus confirming the structures assigned. Mechanism of formation of these compounds has been rationalised. A detailed study of 2D 1H-1H COSY, 1H-13C COSY, HMBC and 2D NOESY of compound 7d led to complete assignment of 1H and 13C NMR signals and its solution conformation.
Resumo:
The rates of NADH oxidation in presence of xanthine oxidase increase to a small and variable extent on addition of high concentrations of lactate dehydrogenase and other dehydrogenases. This heat stable activity is similar to polyvanadate-stimulation with respect to pH profile and SOD sensitivity. Isocitric dehydrogenase (NADP-specific) showed heat labile, SOD-sensitive polyvanadate-stimulated NADH oxidation activity. Polyvanadate-stimulated SOD-sensitive NADH oxidation was also found to occur with riboflavin, FMN and FAD in presence of a non-specific protein, BSA, suggesting that some flavoproteins may possess this activity.