80 resultados para Night vision devices
Resumo:
We demonstrate that etched fiber Bragg gratings (eFBGs) coated with single walled carbon nanotubes (SWNTs) and graphene oxide (GO) are highly sensitive and accurate biochemical sensors. Here, for detecting protein concanavalin A (Con A), mannose-functionalized poly(propyl ether imine) (PETIM) dendrimers (DMs) have been attached to the SWNTs (or GO) coated on the surface modified eFBG. The dendrimers act as multivalent ligands, having specificity to detect lectin Con A. The specificity of the sensor is shown by a much weaker response (factor of similar to 2500 for the SWNT and similar to 2000 for the GO coated eFBG) to detect non specific lectin peanut agglutinin. DM molecules functionalized GO coated eFBG sensors showed excellent specificity to Con A even in the presence of excess amount of an interfering protein bovine serum albumin. The shift in the Bragg wavelength (Delta lambda(B)) with respect to the lambda(B) values of SWNT (or GO)-DM coated eFBG for various concentrations of lectin follows Langmuir type adsorption isotherm, giving an affinity constant of similar to 4 x 10(7) M-1 for SWNTs coated eFBG and similar to 3 x 10(8) M-1 for the GO coated eFBG. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A new, flexible, gas barrier material has been synthesized by exfoliating organically modified nano-clays (MMT) in the blends of Surlyn (PEMA) using a copolymer of vinyl alcohol (EVOH) and demonstrated as a gas barrier material. The materials were characterized by Fourier transform infra red (FTIR) and UV-visible spectroscopy, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and tensile studies. The oxygen and water-vapor permeabilities of the fabricated films were determined by calcium degradation test and a novel permeability setup based on cavity ring down spectroscopy, respectively. Hierarchical simulations of these materials helped us to understand the effect of intermolecular interactions on diffusivities of oxygen and water molecules in these materials. Schottky structured poly(3-hexylthiophene) based organic devices were encapsulated with the fabricated films and aging studies were carried under accelerated conditions. Based on permeability test results and accelerated aging studies, the fabricated PEMA/EVOH/MMT composites were found to be effective in decreasing the permeabilities for gases by about two orders of magnitude and maintaining the lifetime of organic devices.
Resumo:
A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.
Resumo:
The contact behavior of tin mono sulfide (SnS) nanocrystalline thin films with zinc (Zn) and silver (Ag) contacts was studied. SnS films have been deposited on glass substrates by thermal evaporation technique at a growth temperature of 300 degrees C. The as-grown SnS films composed of vertically aligned nanocrystallites with a preferential orientation along the < 010 > direction. SnS films exhibited excellent chemical stoichiometry and direct optical band gap of 1.96 eV. These films also exhibited excellent Ohmic characteristics and low electrical resistivity with Zn contacts. The observed electrical resistivity of SnS films with Zn contacts is 22 times lower than that of the resistivity with Ag contacts. The interfacing analysis reveals the formation of conductive Zn-S layer between SnS and Zn as interfacial layer. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.
Resumo:
Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.
Resumo:
Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.
Resumo:
Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport.
Resumo:
The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.
Resumo:
We report the synthesis and application Cu3BiS3 nanorods in infrared photodectection. Cu3BiS3 nano rods were characterized structurally, optically and electrically. The detailed IR photodectection properties in terms of photo response were demonstrated with IA lamp and 1064 nm laser illuminations. The rapid photocurrent time constants followed by the slower components, resulting due to the defect states. The photo detecting properties for different concentrations of nanorods blended with the conjugate polymer devices were demonstrated. Further the photocurrent was enhanced to threefold increase from 3.47 x 10(-7) A to 2.37 x 10(-3) A at 1 V for 10 mg nanorods embedded in the polymer device. Responsivity of hybrid device was enhanced from 0.0158 NW to 102 NW. The detailed trap assisted space charge transport properties were studied considering the different regimes. Hence Cu3BiS3 can be a promising candidate in the nano switchable near IA photodetectors.
Resumo:
Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.
Resumo:
In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 mu l was quantified in situ as a function of applied voltage from 10 to 90 V in a series of 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).
Resumo:
Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.
Resumo:
We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.