143 resultados para Nano-Indentation
Resumo:
Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs
Resumo:
Homogeneous composite thin films of Fe2O3-carbon nanotube were synthesized in a novel, single-step process by metalorganic chemical vapor deposition (MOCVD) using ferric acetyl acetonate as precursor. The deposition of composite takes place in a narrow range of CVD conditions, beyond which the deposition either multiwall carbon nanotubes (MWNTs) only or hematite (α-Fe2O3) only takes place. The composite film formed on stainless steel substrates were tested for their supercapacitive properties in various aqueous electrolytes.
Resumo:
Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol-gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 A degrees C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 A degrees C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tan delta) were increased with increase of annealing temperature.
Resumo:
We present a statistical methodology for leakage power estimation, due to subthreshold and gate tunneling leakage, in the presence of process variations, for 65 nm CMOS. The circuit leakage power variations is analyzed by Monte Carlo (MC) simulations, by characterizing NAND gate library. A statistical “hybrid model” is proposed, to extend this methodology to a generic library. We demonstrate that hybrid model based statistical design results in up to 95% improvement in the prediction of worst to best corner leakage spread, with an error of less than 0.5%, with respect to worst case design.
Resumo:
Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells. (C) 2011 American Institute of Physics. [doi:10.1063/1.3653388]
Resumo:
We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.
Resumo:
Nanopowders of TiO(2) has been prepared using a microwave irradiation-assisted route, starting from a metalorganic precursor, bis(ethyl-3-oxo-butanoato)oxotitanium (IV), [TiO(etob)(2)](2). Polyvinylpyrrolidone (PVP) was used as a capping agent. The as-prepared amorphous powders crystallize into anatase phase, when calcined. At higher calcination temperature, the rutile phase is observed to form in increasing quantities as the calcination temperature is raised. The structural and physicochemical properties were measured using XRD, FT-IR, SEM, TEM and thermal analyses. The mechanisms of formation of nano-TiO(2) from the metal-organic precursor and the irreversible phase transformation of nano TiO(2) from anatase to rutile structure at higher temperatures have been discussed. It is suggested that a unique step of initiation of transformation takes place in Ti(1/2)O layers in anatase which propagates. This mechanism rationalizes several key observations associated with the anatase rutile transformation.