196 resultados para Magnetic-Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol-gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (epsilon' and epsilon aEuro(3)) and permeability (mu' and mu aEuro(3)) were measured over a wide frequency range from 1 MHz-1.8 GHz. The real part of permittivity varies as `x' concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tan delta). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of `x' increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (M-s) a parts per thousand aEuro parts per thousand 52.211 A.m(2)/Kg for x = 0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gd3+ doped Y3-xGdxFe5O12 (x=0.0, 0.05, 0.15, and 0.25) nanopowders were prepared using modified sol-gel route. The structural characterizations such as X-ray diffraction, transmission electron microscopy has been carried out. The nanopowders were sintered at 700 degrees C/3 h. The lattice parameters and density of the samples were increased with an increase of Gd3+ concentration. The microstructure was analyzed using atomic force microscopy. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range 5-50 GHz. with Gd3+ the dielectric properties were enhanced, but there is a decrease in the magnetic properties. The room temperature magnetization studies were carried out up to 1.5 T. the saturation and remnant magnetization were decreased with an increase of gadolinium concentration. These garnets have low permeability, low losses and a broad distribution of FMR line width which makes them a promising material for microwave devices can be used in the high frequency range i.e. up to 50 GHz. (C) 2013 Elsevier BM. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 A degrees C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm(-1) has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zn-i). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g(-1) even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium hexaferrite thin films have been grown on glass substrates at room temperature in oxygen environment by pulsed laser deposition method. The effect of oxygen pressure (p(o2)) on the structural and magnetic properties has been investigated. The as-deposited films were found to be amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 850 A degrees C in air. The thickness of the film increased with p(o2). The film grown at p(o2) = 0.455 Pa had a clear hexagonal structure. The values of coercivity for the films were found to increase with p(o2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of carbon nanotube encapsulated nickel nanowires (C. E. nanowires of diameter similar to 10 nm), and its comparison to other forms of Ni are carried out in this work. The saturation magnetization (M-s) and coercivity (H-c) for C. E. nanowires are 1.0 emu/g and 230 Oe. The temperature dependence of coercivity follows T-0.77 dependence indicating a superparamagnetic behavior. The field-cooled and zero-field-cooled plots indicate that the blocking temperature (T-B) similar to 300 K. These altered magnetic properties of C. E. nanowires are mainly due to the nanoscale confinement effect from carbon nanotube encapsulation. The shape and magnetic environment enhance the total magnetic anisotropy of C. E. nanowires by a factor of four.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotube (MWCNT)-polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10(-7) to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold similar to 0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four neutral polynuclear magnetic clusters, (Mn6Mn2Na2I)-Mn-III-Na-II(N-3)(8)(mu(1)-O)(2)(L-1)(6)(CH3OH)(2)] (1), (Mn6Na2I)-Na-III(N-3)(4)(mu(4)-O)(2)(L-2)(4)(CH3COO)(4)] (2), Ni-5(II)(N-3)(4)(HL1)(4)(HCOO)(2)(CH3OH)(2)(H2O)(2)]center dot 2CH(3)OH (3) and (Ni4Na2I)-Na-II(N-3)(4)(HL2)(6)]center dot 2CH(3)OH (4) have been synthesized using tetradentate ligands H2L1-2 along with azide as a co-ligand. H2L1-2 are the products formed in situ upon condensation of 2-hydroxy-3-methoxybenzaldehyde with 1-aminopropan-2-ol and 1-aminopropan-3-ol, respectively. Single crystal X-ray diffraction and bond valence sum calculation showed that complex 1 is composed of both Mn-III and Mn-II. Complex 3 contains coordinated formate, which was formed upon in situ oxidation of methanol. The magnetic study over a wide range of temperatures of all the complexes (1-4) showed that 1 and 2 are antiferromagnetic whereas other two (3-4) are predominantly ferromagnetic. The estimated ground states of the complexes are S approximate to 3(1), S = 4(2), S = 5(3) and S approximate to 4(4), respectively. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ferrite samples with the compositional formula, Ni0.5Co0.5-xZnxFe2O4 (0 <= x <= 0.5), was prepared using the citrate based sol gel method for the better understanding of zinc doping on the structural and magnetic properties. The Rietveld-refined X-ray diffraction data revealed that the samples are having cubic structure with the Fd-3m space group. The lattice parameter increased linearly with increasing Zn content. The surface morphology and stoichiometric ratio of the compositional elements were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS). EDS showed that the elemental ratios were stoichiometric. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Zn concentration up to x=0.3 and a decrease thereafter. These results could be explained using Neel's collinear two-sub-lattice model and three-sub-lattice non-collinear model suggested by Yafet and Kittel. The magnetic cubic anisotropy constant determined by the law of approach to saturation decreased with increasing Zn content. The underlying mechanism behind observed behavior was discussed qualitatively. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors prepared (1 - x) BiFeO3 - (x)Pb(Zr0.52Ti0.48)O-3 for x <= 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x <= 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content may be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO3. The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented heterotri-spin (Cu Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely Ln(3)Cu(hfac)II(NitPhOAII)41 (Ln(III)=Gd 1(Gd), Tb 1(Tb), Dy 1(Dy); NitPhOAII=2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide), Ln(3)Cu(hfac)II(NitPhOPO4] (1-nrn=Gd 2Gd, Tb 2Tb, Dy 2(Dy), Ho 2HOf Yb 2yb; NitPhOPr= 2-(4'-propoxyphenyI)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and Ln3Cu(hfac)II(NitPhOB441 (LnIm=Gd 3Gd, Tb 3Tb, Dy 3(Dy); NitPhOBz=2-(4'-benzyloxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal radical interactions take place in these heterotri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong magnetoelectric (ME) interaction was exhibited at both dc and microwave frequencies in a lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) multiferroic, which were prepared by sol-gel route. The room temperature permeability measurements were carried out in the frequency range of 1 MHz-1 GHz. A systematic study of structural, magnetic and ME properties were undertaken. The room temperature ferromagnetic resonance (FMR) was studied. Strong ME coupling is demonstrated in 70NBT-30MFO composite by an electrostatically tunable FMR field shift up to 428 Oe (at E = 4 kV/cm), which increases to a large value of 640 Oe at E = 8 kV/cm. Furthermore, these lead-free multiferroic composites exhibiting electrostatically induced magnetic resonance field at microwave frequencies provide great opportunities for electric field tunable microwave devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sm3+ doped Y3-xSmxFe5O12 (x = 0-3) nanopowders were prepared using modified sol-gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 degrees C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3-xSmxFe5O12 (0-3) decreases on increasing the Sm concentration (x). The low values of magnetic (mu' and mu `') properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.