112 resultados para II-P SUPERNOVAE
Resumo:
Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
The nature of interaction of Au(III) with nucleic acids was studied by using methods such as uv and ir spectrophotometry, viscometry, pH titrations, and melting-temperature measurements. Au(III) is found to interact slowly with nucleic acids over a period of several hours. The uv spectra of native calf-thymus DNA 9pH 5.6 acetate buffer containing (0.01M NaCIO4) showed a shift in λ max to high wavelengths and an increase in optical density at 260 nm. There was a fourfold decrease in viscosity (expressed as ηsp/c). The reaction was faster at pH 4.0 and also with denatured DNA (pH 5.6) and whole yeast RNA (pH 5.6). The order of preference of Au(III) (as deduced from the time of completion of reaction) for the nucleic acids in RNA > denatured DNA > DNA. The reaction was found to be completely reversible with respect KCN. Infrared spectra of DNA-Au(III) complexes showed binding to both the phosphate and bases of DNA. The same conclusions were also arrived at by melting-temperature studies of Au(III)-DNA system. pH titrations showed liberation of two hydroxylions at r = 0.12 [r = moles of HAuCl4 added per mole of DNA-(P)] and one hydrogen ion at r = 0.5. The probable binding sites could be N(1)/N(7) of adenine, N(7) and/or C(6)O of guanine, N(3) of cytosine and N(3) of thymine. DNAs differing in their (G = C)-contents [Clostridium perfingens DNA(G = C, 29%), salmon sperm DNA (G + C, 42%) and Micrococcus lysodeikticus DNA(G + C, 29%), salmon sperm DNA (G = C, 72%)] behaved differently toward Au(III). The hyperchromicity observed for DNAs differing in (G + C)-content and cyanide reversal titrations indicate selectivity toward ( A + T)-rich DNA at lw values of r. Chemical analysis and job's continuous variation studies indicated the existence of possible complexes above and below r = 1. The results indicate that Au(III) ions probably bind to hte phosphate group in the initial stages of the reaction, particularly at low values of r, and participation of the base interaction also increases. Cross-linking of the two strands by Au(III) may take place, but a complete collapse of the doulbe helix is not envisaged. It is probable that tilting of the bases or rotaiton of the bases around the glucosidic bond, resulting in a significant distrotion of the double helix, might take place due to binding of Au(III) to DNA.
Resumo:
Reaction of [(eta-6-p-cymene)RuCl(L star)] with AgClO4 in Me2CO gives a perchlorate complex which on subsequent treatment with PPh3, gamma-picoline or Cl- yields adducts showing that there can be retention as well as inversion of configuration at the metal centre. The (R)Ru,(S)C absolute configurations of the chiral centres in the triphenylphosphine adduct have been established by an X-ray diffraction study [HL star, (S)-alpha-methylbenzylsalicylaldimine]. The CD spectral study reveals that there is an inversion of configuration during formation of the PPh3 adduct.
Resumo:
Menthofuran (II, 4,5,6,7-tetrahydro-3,6-dimethyl benzofuran), the proximate toxin of R-(+)-pulegone (I), was administered orally to rats (200 mg/kg of body weight/day) for three days and the urinary metabolites were investigated. Among the several metabolites formed, two of them viz. 4-Hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) were indentified. In support of the formation of these metabolites, it has been demonstrated that phenobarbital induced rat liver microsomes readily convert 4-methyl-2-cyclohexenone (V) to 4-hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) in the presence of NADPH and O2. Possible mechanism for the formation of these two metabolites (VII, VIII) from menthofuran (II) has been proposed.
Resumo:
The airborne pollen of the South American weed, Parthenium hysterophorus (American feverfew), accidentally introduced into India was found to be responsible for severe allergic rhinitis. A random clinical survey conducted on 2035 residents of Bangalore city with the aid of questionnaires and skin tests revealed that 7.1% of the study population was suffering from allergic rhinitis due to exposure to Parthenium pollen. Skin-prick tests performed on 1294 clinic patients suffering from nasobronchial allergy during the past 4 years have also shown that 42.5% were sensitive to Parthenium pollen. IgE and IgG antibodies specific for Parthenium pollen allergens were demonstrable in the sera of Parthenium-sensitive rhinitis patients. The specificity of these antibodies to Parthenium allergens was established by ELISA. A 7- to 11-fold higher stimulation was observed when lymphocytes from two Parthenium-sensitive rhinitis patients were treated in vitro with Parthenium pollen extract. To our knowledge, nowhere in the world has such a high incidence of allergic rhinitis due to a single pollen ever been reported.
Resumo:
In this paper, the design basis of the conventional Khadi and Village Industries Commission biogas plants has been elucidated. It has been shown that minimisation of the cost of the gas holder alone leads to the narrow and deep digesters of conventional plants. If instead, the total capital cost of the gas holder plus digester is minimised, the optimisation leads to wide and shallow digesters, which are less expensive. To test this alternative, two prototype plants have been designed, constructed and operated. These plants are not only 25–40% cheaper, but their performance is actually slightly better than the conventional plants.
Resumo:
The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.
Resumo:
The diruthenium(II,III) compound [Ru2Cl(O2CC6H4-p-OMe)4](H2O)0.25 (1) has been prepared and its crystal structure determined by X-ray studies. The crystals belong to the triclinic space group, PImage , and the asymmetric unit consists of one full dimer and two half dimers. The {Ru2(O2CC6H4-p-OMe)4+} units are bridged by chloride ions into an infinite zigzag chain, with an average Ru---Cl distance and Ru---Cl---Ru angle of 2.567(2) Å and 121.0(1)°, respectively. The average Ru---Ru distance of 2.286(1) Å in 1 is comparable with that in analogous tetra-alkylcarboxylates, Ru2Cl(O2CR)4 and tetra-amidates, Ru2Cl(ArCONH)4.
Resumo:
The energy input to giant molecular clouds is recalculated, using the proper linearized equations of motion, including the Coriolis force and allowing for changes in the guiding center. Perturbation theory yields a result in the limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the motion equations allows the strong encounter regime to be studied. The present perturbation theory result differs by a factor of order unity from that of Jog and Ostriker (1988). The result of present numerical integrations for the 2D (planar) velocity dispersion is presented. The accretion rate for a molecular cloud in the Galactic disk is calculated.
Resumo:
Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.
Resumo:
Arene ruthenium(II) Schiff base complexes of formulations [(η -p-cymene)RuCl(C5H4N-2-CH=NC6H4-p-X)](ClO4) (1) and [(η6-p-cymene)RuCl(O-o-C6H4CH=NC6H4-p-X)] (2) (X = H, Me, OMe, NO2, Cl) were prepared by reacting [(η6-p-cymene)RuCl2]2 with corresponding pyridine-2-carboxaldimines and sodium salts of salicylaldimines in dry THF, respectively. Complex 1 is isolated as a perchlorate salt. The molecular structure of [(η6-p-cymene)RuCl(C5H4 N-2-CH=NC6H4-p-Me)]Cl·C6H6·H2O has been determined by X-ray crystallography. The complex contains an η6-p-cymene group, a chloride and a bidentate chelating Schiff base ligand.
Resumo:
Design and synthesis of three novel 2 + 2] self-assembled molecular rectangles 1-3 via coordination driven self-assembly of predesigned Pd(II) ligands is reported. 1,8-Diethynylanthracene was assembled with trans-Pd(PEt3)(2)Cl-2 in the presence of CuCl catalyst to yield a neutral rectangle 1 via Pd-C bond formation. Complex 1 represents the first example of a neutral molecular rectangle obtained via C-Pd coordination driven self-assembly. A new Pd-2(II) organometallic building block with 180 degrees bite-angle 1,4-bistrans-(ethynyl)Pd(PEt3)(2)(NO3)] benzene (M-2) containing ethynyl functionality was synthesized in reasonable yield by employing Sonagashira coupling reaction. Self-assembly of M-2 with two organic clip-type donors (L-2-L-3) afforded 2 + 2] self-assembled molecular rectangles 2 and 3, respectively L-2 = 1,8-bis(4-pyridylethynyl) anthracene; L-3 = 1,3-bis(3-pyridyl) isophthalamide]. The macrocycles 1-3 were fully characterized by multinuclear NMR and ESI-MS spectroscopic techniques, and in case of 1 the structure was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of Pd-ethynyl bonds helped to make the assemblies p-electron rich and fluorescent in nature. Complexes 1-2 showed quenching of fluorescence intensity in solution in presence of nitroaromatics, which are the chemical signatures of many commercially available explosives.
Resumo:
Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.