149 resultados para High frequency.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of measurements at a high frequency on reverse bias capacitance of copper-doped germanium junctions are reported. Phenomenal increase in capacitance is found in the breakdown region, particularly at low temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Raman spectrum of crystalline boric acid is recorded using mercuryλ2537 excitation. Fifteen Raman lines, three of them belonging to the lattice spectrum, are reported. Satisfactory assignments of all the observed Raman frequencies are made using the available X-ray crystal structure data. From the presence of a new high frequency Raman band at about 3420 cm.−1 it is suggested that there might be a small number of long, weak O-H....O hydrogen bonds in the crystal, in addition to the hydrogen bonds of moderate strength reported from X-ray diffraction data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Raman spectra of methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol have been recorded using λ 2537 excitation. 35, 49, 45 and 51 Raman lines respectively have been identified in the spectra of these alcohols, in addition to the rotational 'wings'. In each case, a large number of additional lines have been recorded. The existence of Raman lines with frequency shifts greater than 3800 cm.-1, first reported by Bolla in the spectrum of ethyl alcohol, has been confirmed. Similar high-frequency shift Raman lines have also been recorded in the spectrum of methyl alcohol. They have been assigned as combinations. Proper assignments have been given for the prominent Raman lines appearing in the spectra of these alcohols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a robust fixed order H-2 controller design using Strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H-2 controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Fe powders were synthesized by transmetallation reaction and embedded in silica to form Fe-SiO2 nanocomposite. Thermomagnetic study of the as-prepared Fe sample indicates the presence of Fe3O4 and Fe particles. Oxidation studies of Fe and Fe-SiO2 show an increased thermal stability of Fe-SiO2 nanocomposite over pure Fe. The Fe-SiO2 shows an enhanced oxidation temperature (i.e., 780 K) and a maximum saturation magnetization value of (135 emu/g) with 64 wt.% of Fe content in silica. Electrical and dielectric behaviour of the Fe-SiO2 nanocomposite has been investigated as a function of temperature and frequency. Low frequency ac conductivity and dielectric constants were found to be influenced by desorptions of chemisorbed moisture. High saturation magnetization, thermal stability, frequency-dependent conductivity and low power loss make Fe-silica a promising material for high frequency applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the imaging property of an oriented photographic diffuser which is the record of an elongated speckle pattern. It is found that the contrast transfer, when gratings are imaged through the slits in the diffuser, is considerably higher compared to imaging through a circular pinhole of comparable dimensions. We use the diffuser to produce high frequency gratings through multiple imaging a low frequency grating. The grating is used to demonstrate optical image subtraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interannual variation of surface fields over the Arabian Sea and Bay of Bengal are studied using data between 1900 and 1979. It is emphasized that the monthly mean sea surface temperature (SST) over the north Indian Ocean and monsoon rainfall are significantly affected by synoptic systems and other intraseasonal variations. To highlight the interannual signals it is important to remove the large-amplitude high-frequency noise and very low frequency long-term trends, if any. By suitable spatial and temporal averaging of the SST and the rainfall data and by removing the long-term trend from the SST data, we have been able to show that there exists a homogeneous region in the southeastern Arabian Sea over which the March�April (MA) SST anomalies are significantly correlated with the seasonal (June�September) rainfall over India. A potential of this premonsoon signal for predicting the seasonal rainfall over India is indicated. It is shown that the correlation between the SST and the seasonal monsoon rainfall goes through a change of sign from significantly positive with premonsoon SST to very small values with SST during the monsoon season and to significantly negative with SST during the post-monsoon months. For the first time, we have demonstrated that heavy or deficient rainfall years are associated with large-scale coherent changes in the SST (although perhaps of small amplitude) over the north Indian 0cean. We also indicate possible reasons for the apparent lack of persistence of the premonsoon SST anomalies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Higher order LCL filters are essential in meeting the interconnection standard requirement for grid-connected voltage source converters. LCL filters offer better harmonic attenuation and better efficiency at a smaller size when compared to the traditional L filters. The focus of this paper is to analyze the LCL filter design procedure from the point of view of power loss and efficiency. The IEEE 1547-2008 specifications for high-frequency current ripple are used as a major constraint early in the design to ensure that all subsequent optimizations are still compliant with the standards. Power loss in each individual filter component is calculated on a per-phase basis. The total inductance per unit of the LCL filter is varied, and LCL parameter values which give the highest efficiency while simultaneously meeting the stringent standard requirements are identified. The power loss and harmonic output spectrum of the grid-connected LCL filter is experimentally verified, and measurements confirm the predicted trends.