238 resultados para Graphene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the effect of electrochemical doping on single-layer graphene (SG) with holes and electrons has been investigated, the effect of charge-transfer doping on SG has not been examined hitherto. Effects of varying the concentration of electron donor and acceptor molecules such as tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) on SG produced by mechanical exfoliation as well as by the reduction of single-layer graphene oxide have been investigated. TTF softens the G-band in the Raman spectrum, whereas TCNE stiffens the G-band. The full-width-at-half-maximum of the G-band increases on interaction with both TTF and TCNE. These effects are similar to those found with few-layer graphene, but in contrast to those found with electrochemical doping. A common feature between the two types of doping is found in the case of the 2-D band, which shows softening and stiffening on electron and hole doping, respectively. The experimental results are explained on the basis of the frequency shifts, electron-phonon coupling and structural inhomogeneities that are relevant to molecule-graphene interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanomaterials (CNMs), such as exfoliated graphene (EG), long-chain functionalized EG, single-walled carbon nanotubes (SWNTs), and fullerene (C-60), have been investigated for their interaction with two structurally different gelators based on all-trans tri-p-phenylenevinylene bis-aldoxime (1) and n-lauroyl-L-alanine (2) both in solution and in supramolecular organogels. Gelation occurs in toluene through hydrogen bonding and van der Waals interactions for 1 and 2 in addition to pp stacking specifically in the case of 1. These nanocomposites provide a thorough understanding in terms of molecular-level interactions of dimensionally different CNMs with structurally different gelators. The presence of densely wrapped CNMs encapsulated fibrous network in the resulting composites is evident from various spectroscopic and microscopic studies, indicating the presence of supramolecular interactions. Concentration- and temperature-dependent UV/Vis and fluorescence spectra show that CNMs promote aggregation of the gelator molecules, leading to hypochromism and quenching of the fluorescence intensity. Thermotropic mesophases of 1 are altered by the inclusion of a small amount of CNMs. The gelCNM composites show increased electrical conductivity compared with that of the native organogel. Rheological studies of the composites demonstrate the formation of rigid and viscoelastic solidlike assembly due to reinforced aggregation of the gelators on CNMs. Synergistic behavior is observed in case of the composite gel of 1, containing a mixture of EG and SWNT, when compared with other mixtures of CNMs in all combinations with EG. This affords new nanocomposites with interesting optical, thermal, electrical, and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemistry underlying the aqueous dispersibility of graphene oxide (GO) and reduced graphene oxide (r-GO) is a key consideration in the design of solution processing techniques for the preparation of processable graphene sheets. Here, we use zeta potential measurements, pH titrations, and infrared spectroscopy to establish the chemistry underlying the aqueous dispersibility of GO and r-GO sheets at different values of pH. We show that r-GO sheets have ionizable groups with a single pK value (8.0) while GO sheets have groups that are more acidic (pK = 4.3), in addition to groups with pK values of 6.6 and 9.0. Infrared spectroscopy has been used to follow the sequence of ionization events. In both GO and r-GO sheets, it is ionization of the carboxylic groups that is primarily responsible for the build up of charge, but on GO sheets, the presence of phenolic and hydroxyl groups in close proximity to the carboxylic groups lowers the pK(a) value by stabilizing the carboxylate anion, resulting in superior water dispersibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel composite graphene oxide (GO)/poly(allylamine hydrochloride) (PAH) multilayer capsules have been fabricated by layer-by-layer (LbL) assembly. They were found to possess unique permeability properties compared to traditional LbL capsules. These hybrid capsules showed special ``core-shell'' loading property for encapsulation of dual drugs simultaneously into the core and shell of the capsules respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene's nano-dimensional nature and excellent electron transfer properties underlie its electrocatalytic behavior towards certain substances. In this light, we have used graphene in the electrochemical detection of bisphenol A. Graphene sheets were produced via soft chemistry route involving graphite oxidation and chemical reduction. X-ray diffraction, Fourier transform infra-red (FT-IR) and Raman spectroscopy were used for the characterization of the as-synthesized graphene. Graphene exhibited amorphous structure in comparison with pristine graphite from XRD spectra. FTIR showed that graphene exhibits OH and COOH groups due to incomplete reduction. Raman spectroscopy revealed that multi-layered graphene was produced due to low intensity of the 2D-peak. Glassy carbon electrode was modified with graphene by a simple drop and dry method. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. The prepared graphene- modified glassy carbon electrode exhibited more facile electron kinetics and enhanced current of about 75% when compared to the unmodified glassy carbon electrode. The modified electrode was used for the detection of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with concentration over a wide range of 5 x 10(-8) mol L-1 to 1 x 10(-6) mol L-1 and the detection limit of this method was as low as 4.689 x 10(-8) M. This method was also employed to determine bisphenol A in a real sample

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address a physically based analytical model of quantum capacitance (C-Q) in a bilayer graphene nanoribbon (BGN) under the application of an external longitudinal static bias. We demonstrate that as the gap (Delta) about the Dirac point increases, a phenomenological population inversion of the carriers in the two sets of subbands occurs. This results in a periodic and composite oscillatory behavior in the C-Q with the channel potential, which also decreases with increase in Delta. We also study the quantum size effects on the C-Q, which signatures heavy spatial oscillations due to the occurrence of van Hove singularities in the total density-of-states function of both the sets of subbands. All the mathematical results as derived in this paper converge to the corresponding well-known solution of graphene under certain limiting conditions and this compatibility is an indirect test of our theoretical formalism. (C) 2012 Elsevier By. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the thermopower of monolayer graphene in various circumstances. We consider acoustic phonon scattering which might be the operative scattering mechanism in freestanding films and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. We show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally. We also note that a Yukawa scattering potential can be used to fit experimental data for the thermopower for reasonable values of the screening length parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced-graphene oxide (rGO) sheets have been functionalized by covalently linking beta-cyclodextrin (beta CD) cavities to the sheets via an amide linkage. The functionalized beta-CD:rGO sheets, in contrast to rGO, are dispersible over a wide range of pH values (2-13). Zeta potential measurements indicate that there is more than one factor responsible for the dispersibility. We show here that planar aromatic molecules adsorbed on the rGO sheet as well as nonplanar molecules included in the tethered beta-CD cavities have their fluorescence effectively quenched by the beta-CD:rGO sheets. The beta-CD:rGO sheets combine the hydrophobicity associated with rGO along with the hydrophobicity of the cyclodextrin cavities in a single water-dispersible material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal reaction of a mixture of a colloidal dispersion of graphite oxide and ammonium vanadate yielded a hybrid made of graphene and a nanotubular metastable monoclinic polymorph of VO2, known as VO2(B). The formation of VO2(B) nanotubes is accompanied by the reduction of graphite oxide. Initially the partially scrolled graphite oxide layers act as templates for the crystallization of VO2(B) in the tubular morphology. This is followed by the reduction of graphite oxide to graphene resulting in a hybrid in which VO2(B) nanotubes are dispersed in graphene. Electron microscopic studies of the hybrid reveal that the VO2(B) nanotubes are wrapped by and trapped between graphene sheets. The hybrid shows potential to be a high capacity cathode material for lithium ion batteries. It exhibits a high capacity (similar to 450 mAh/g) and cycling stability. The high capacity of the hybrid is attributed to the interaction between the graphene sheets and the VO2(B) tubes which improves the charge-transfer. The graphene matrix prevents the aggregation of the VO2(B) nanotubes leading to high cycling stability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of interaction of tetracyanoethylene (TCNE) and tetrathia fulvalene (TTF) with boron- and nitrogen-doped graphene has been investigated by Raman spectroscopy. The G- and 2D bands of boron- and nitrogen-doped graphenes in the Raman spectra show significantly different changes on interaction with electron-donor and -acceptor molecules. Thus, tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) have different effects on the Raman spectra of boron- and nitrogen-doped graphenes. The changes in the Raman spectra brought about by electron-donor and -acceptor molecules can be understood in general terms on the basis of molecular charge transfer. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we observe gate tunable negative differential conductance (NDC) and current saturation in single layer and bilayer graphene transistor at high source-drain field, which arise due to the interplay among (1) self-heating, (2) hot carrier injection, and (3) drain induced minority carrier injection. The magnitude of the NDC is found to be reduced for a bilayer, in agreement with its weaker carrier-optical phonon coupling and less efficient hot carrier injection. The contributions of different mechanisms to the observed results are decoupled through fast transient measurements with nanosecond resolution. The findings provide insights into high field transport in graphene. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4754103]