89 resultados para GLUTATHIONE-PEROXIDASE
Resumo:
The enzymes involved in the biosynthesis of isoleucine and valine have been shown to be present in cell-free extracts of Mycobacterium tuberculosis H37Rv. In addition to the known enzymes of the pathway, cell-free extracts of this organism contain a new enzyme. When cell-free extracts were incubated with acetolactate and Image -ascorbic acid, without reduced nicotinamide adenine dinucleotide phosphate, the isomer of acetolactate, viz., α-keto-β-hydroxyisovalerate, was found to accumulate and was identified by different methods. The reaction is enzymic, and Image -ascorbic acid cannot be replaced by other reducing agents such as hydroquinone, 2,6-dichlorophenol indophenol, or glutathione; by derivatives of Image -ascorbic acid such as dehydroascorbic acid or dimethyl ascorbic acid; or by cobamide coenzyme. Since the extracts also isomerize α-acetohydroxybutyrate to α-keto-β-hydroxy-β-methylvalerate, the enzyme catalyzing the reaction has been termed “acetohydroxy acid isomerase.” This is the first time that the presence of acetohydroxy acid isomerase has been reported in any biological system and that a specific metabolic role has been assigned for Image -ascorbic acid. The extract also possesses reductase activity to convert α-keto-β-hydroxyisovalerate to α,β-dihydroxyisovalerate in the presence of reduced nicotinamide adenine dinucleotide phosphate.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.
Resumo:
The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.
Resumo:
A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.
Resumo:
Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.
Resumo:
H2O2, in addition to producing highly reactive molecules through hydroxyl radicals or peroxidase action, can exert a number of direct effects on cells, organelles and enzymes. The stimulations include glucose transport, glucose incorporation into glycogen, HMP shunt pathway, lipid synthesis, release of calcium from mitochondria and of arachidonate from phospholipids, poly ADP ribosylation, and insulin receptor tyrosine kinase and pyruvate dehydrogenase activities. The inactivations include glycolysis, lipolysis, reacylation of lysophospholipids, ATP synthesis, superoxide dismutase and protein kinase C. Damages to DNA and proteoglycan and general cytotoxicity possibly through oxygen radicals were also observed. A whole new range of effects will be opened by the finding that H2O2 can act as a signal transducer in oxidative stress by oxidizing a dithiol protein to disulphide form which then activates transcription of the stress inducible genes. Many of these direct effects seem to be obtained by dithiol-disulphide modification of proteins and their active sites, as part of adaptive responses in oxidative stress.
Resumo:
Entamoeba histolytica-specific serum IgG, IgA, IgM and IgE antibodies were assayed in cases of amoebiasis in an endemic area. Patient groups consisted of amoebic liver abscess (n=18), pre-abscess hepatic amoebiasis (n=22) and amoebic colitis (n=30). Control subjects comprised 26 asymptomatic cyst passers, 13 giardiasis cases, 20 typhoid patients and 24 non-amoebic individuals. Serum IgG was assayed by ELISA, using a monoclonal anti IgG β- galactosidase (IgG β-gal) conjugate, a polyclonal avidin biotin horse radish peroxidase (AB-HRP), and a polyclonal anti IgG horse radish peroxidase (IgG HRP) conjugate. IgA and IgM were assayed by the β-gal ELISA and IgE by AB-HRP. Diagnostically significant IgG and IgA while lower IgM and IgE antibody levels were seen in extraintestinal cases. About 40% of suspected pre-abscess hepatic amoebiasis cases were confirmed by antibody estimation. All isotype levels in most dysentery cases were in the range of the controls.
Resumo:
Cell-free extracts with high 14?-hydroxylase activity were prepared from induced vegetative cell cultures of Mucor piriformis by grinding in potassium phosphate buffer (0.05 M, pH 8.0) containing glucose (0.25 M), KCl (1 mM), glutathione (1.0 mM) and glycerol (10%). Although the ideal pH for preparing the cell-free extract from vegetative cells was 8.0, the pH optimum of the hydroxylase was found to be 7.6. Microsomes (2.0 mg) prepared from the crude cell-free extract hydroxylated progesterone to 14?-hydroxyprogesterone in not, vert, similar60% yields in 30 min in the presence of NADPH and O2. Microsomes prepared from the uninduced cells did not contain any 14?-hydroxylase activity. The hydroxylase activity was inhibited to a significant extent by CO and p-chloromercuribenzoate whereas moderate inhibition was noticed in the presence of SKF-525A, metyrapone and N-methylmaleimideindicating the possible involvement of the cytochromeP-450 system in the reaction. The membrane bound hydroxylase was solubilized using Triton X-100 and the solubilized fraction contained nearly 35% of the original hydroxylase activity.
Resumo:
Ferrocenyl conjugates 2-ferrocenylimidazophenanthroline (1) and 2-ferrocenylimidazophenanthrene (2) were prepared, characterized, and their photoinduced DNA cleavage and photocytotoxic activity were studied. 2-Phenylimidazophenanthroline (3) was used as a control species. Compound 2 was characterized by X-ray crystallography. The interaction of the compounds with double-stranded calf thymus DNA (CT DNA) was studied. The compounds show good binding affinity to CT DNA with K-b values of approximately 10(5) M-1. Thermal denaturation data suggest the groove binding nature of the compounds. The redox-active compounds show poor chemical nuclease activity in the presence of hydrogen peroxide and glutathione (GSH). Compound 1 exhibits significant DNA photocleavage activity in visible light of 476 and 532 nm. Compound 3 shows only moderate DNA cleavage activity. The positive effect of the ferrocenyl moiety is demonstrated by the DNA photocleavage data. Mechanistic investigations reveal the formation of superoxide as well as hydroxyl radicals as the active species. The photocytotoxicity of the compounds in HeLa cells was studied upon irradiation with visible light (400-700 nm). Compound 1 shows efficient photocytotoxic activity with an IC50 value of 13 mu M, while compounds 2 and 3 are less active with IC50 values of > 50 and 22 mu M, respectively.
Resumo:
Cadmium (Cd) influences lipid peroxidation (LPO) by enhancing peroxidation of membrane lipids and by disturbing the antioxidant system of cells. In isolated rat hepatocytes, LPO was observed in cells incubated with Cd (50-250 mu M) for various time periods up to 90 min. The antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) were inhibited along with depletion of glutathione (GSH) in hepatocytes treated with Cd. The results show that Cd influences LPO in rat hepatocytes due to decrease in antioxidant status.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)](ClO4) (1-3) of N-2-pyridylmethylidine-2-hydroxyphenylamine (HL) Schiff base and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d: 2',3'-f] quinoxaline (dpq in 2) or dipyrido3,2-a: 2',3'-c] phenazine (dppz in 3), were prepared, characterized and their DNA binding property, photo-induced DNA cleavage activity and photocytotoxicity in HeLa cells studied. The crystal structure of 1 shows the presence of a VO2+ moiety in VO2N4 coordination geometry. The complexes show a d-d band at similar to 830 nm in DMF. The complexes display an oxidative V(V)-V(IV) response near 0.5 V versus SCE and a reductive V(IV)/V(III) response near -0.65 V in DMF -0.1 M TBAP. The complexes that are avid binders to CT DNA giving K-b values within 7.1 x 10(4) to 3.2 x 10(5) M-1, do not show any significant chemical nuclease activity in presence of 3-mercaptopropionic acid or glutathione. The dpq and dppz complexes are photocleavers of pUC19 DNA in UV-A light of 365 nm forming both O-1(2) and (OH)-O-center dot radicals and in near-IR light of 785 nm forming (OH)-O-center dot radicals. The dppz complex exhibits photocytotoxicity in visible light in HeLa cells (IC50 = 6.8 mu M). Flow-cytometric study on this complex shows a high sub-G1 phase in light compared to dark indicating PDT effect. (C) 2011 Elsevier B. V. All rights reserved.