146 resultados para Fluorescence-polarization
Resumo:
Two identities involving quarter-wave plates and half-wave plates are established. These are used to improve on an earlier gadget involving four wave plates leading to a new gadget involving just three plates, a half-wave plate and two quarter-wave plates, which can realize all SU(2) polarization transformations. This gadget is shown to involve the minimum number of quarter-wave and half-wave plates. The analysis leads to a decomposition theorem for SU (2) matrices in terms of factors which are symmetric fourth and eighth roots of the identity.
Resumo:
We study change in the polarization of electromagnetic waves due to the stimulated Raman scattering in a plasma. In this process an electromagnetic wave undergoes coherent scattering off an electron plasma wave. It is found that some of the observed polarization properties such as the rapid temporal variations, sense reversal, rotation of the plane of polarization, and change of nature of polarization in the case of pulsars and quasars could be accounted for through stimulated Raman scattering.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
Click chemistry has been successfully extended into the field of molecular design of novel amphiphatic adducts. After their syntheses and characterizations, we have studied their aggregation properties in aqueous medium. Each of these adducts forms stable suspensions in water. These suspensions have been characterized by dynamic light scattering (DLS) studies and transmission electron microscopy (TEM). The presence of inner aqueous compartments in such aggregates has been demonstrated using dye (methylene blue) entrapment studies. These aggregates have been further characterized using X-ray diffraction (XRD), which indicates the existence of bilayer structures in them. Therefore, the resulting aggregates could be described as vesicles. The temperature-induced order-to-disorder transitions of the vesicular aggregates and the accompanying changes in their packing and hydration have been examined using high-sensitivity differential scanning calorimetry, fluorescence anisotropy, and generalized polarization measurements using appropriate membrane-soluble probe, 1,6-diphenylhexatriene, and Paldan, respectively. The findings of these studies are consistent with each other in terms of the apparent phase transition temperatures. Langmuir monolayer studies confirmed that these click adducts also form stable monolayers on buffered aqueous subphase at the air-water interface.
Resumo:
Pyranine entrapped soylipid liposomes have been used as a model system to study the proton transport across membrane in the presence of A23187, a carboxylic ionophore specific for electroneutral exchange of divalent cations. An apparent rate constant (k(app)) for transport of protons has been determined from the rate of change of fluorescence intensity of pyranine by stopped flow rapid kinetics in the presence of proton gradient. The variation of k(app) has been studied as a function of ionophore concentration and the results have been compared with gramicidin-a well known channel former under the similar experimental conditions. The rates thus obtained showed that A23187 is not only a simple carrier but also shows channel behaviour at high concentration of ionophore.
Resumo:
We propose that strong fluorescence in conjugated polymers requires a dipole-allowed state to be the lowest singlet. Hückel theory for para-conjugated phenyl rings yields an extended, topologically one-dimensional ?-system with increased alternation, states localized on each ring, and charge-transfer excitations between them. Exact Pariser�Parr�Pople results and molecular spectra for oligomers support a topological contribution and a lowest dipole-allowed singlet in phenylene polymers.
Resumo:
The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.
Resumo:
Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.
Resumo:
Cross-polarization from the dipolar reservoir for a range of mismatched Hartmann-Hahn conditions has been considered. Experiment, in general, agrees with the dispersive Lorentzian behavior expected on the basis of quasi-equilibrium theory. It is observed that inclusion of additional mechanisms of polarization transfer lead to an improvment of the fit of the experimental results. The utility of extending the technique to the case of ordered long chain molecules, such as liquid crystals, for the measurement of the local dipolar field is also presented. (C) 2002 Elsevier Science (USA).
Resumo:
Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.
Resumo:
Glycine Phosphite [NH3CH2COOH3PO3], abbreviated as GPI, undergoes a para-ferroelectric phase transition from the monoclinic symmetry P2(1)/a to P2(1) at 224.7 K. We report here a systematic study of the polarization switching process in this crystal. Growth of these crystals from aqueous solution has been undertaken employing both solvent evaporation and slow cooling methods. Hysteresis loop measurements along the polar b-axis yielded a spontaneous polarization value of 0.5 muC/cm(2) and a coercive field of 2.5 kV/cm. Conventional Merz technique was employed for polarization switching studies, wherein bipolar square pulses were applied to the sample to induce domain reversal. The transient switching pulse that flows through the sample on application of the field was recorded. The maximum switching time required for domain switching was measured both as a function of electric field and temperature. The experimentally observed switching curves were fitted with the model based on the Pulvari-Kuebler theory of nucleation and growth of domains. From the experimental data, the values of mobility and activation field were obtained. It was observed that switching process in this crystal is predominantly governed by the forward growth of domain walls in the high field region. However, switching process in GPI crystal was found to be slower than that found in other glycine based ferroelectric crystals.