124 resultados para Fixed partial denture
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.
Resumo:
Epoxy nanocomposite samples with a good dispersion of alumina nanoparticles in epoxy matrix were prepared and experiments were performed to measure their partial discharge resistant characteristics. Epoxy alumina nanocomposites with 0.1, 1, 5, 10 and 15 wt% nanofillers were prepared in the laboratory and partial discharge (PD) experiments were conducted at a voltage of 10 kV for different durations using IEC (b) type electrodes. The degradation of the sample surfaces were analyzed using SEM techniques, surface profile studies, FTIR spectroscopy as well as PD studies. An attempt was made to understand the interaction dynamics between the nanoparticle and the epoxy chain by measuring the glass transition temperature of the nanocomposites. The partial discharge resistance obtained for the nanocomposites are compared with those of unfilled epoxy and epoxy microcomposites. It was observed that even with 0.1 wt% of nanofiller added to the epoxy matrix, the partial discharge resistance to degradation gets improved considerably. It was also observed that the inter particle distance has a significant effect on the discharge resistance to degradation. The improvement in the degradation resistance is attributed to the interactions between the nanoparticle and the epoxy chain. A possible mechanism for the surface degradation of nanocomposites has been proposed.
Resumo:
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.
Resumo:
Computer Vision has seen a resurgence in the parts-based representation for objects over the past few years. The parts are usually annotated beforehand for training. We present an annotation free parts-based representation for the pedestrian using Non-Negative Matrix Factorization (NMF). We show that NMF is able to capture the wide range of pose and clothing of the pedestrians. We use a modified form of NMF i.e. NMF with sparsity constraints on the factored matrices. We also make use of Riemannian distance metric for similarity measurements in NMF space as the basis vectors generated by NMF aren't orthogonal. We show that for 1% drop in accuracy as compared to the Histogram of Oriented Gradients (HOG) representation we can achieve robustness to partial occlusion.
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
An attempt has been made to study the effect of time and test procedure on the behaviour of partial discharge (PD) pulses causing failure of oil-pressboard system under power frequency voltages using circular disc shaped samples and uniform field electrodes. Weibull statistics have been used to handle the large amount of PD data. The PD phenomena has been found to be stress and time dependent. On the basis of stress level, three different regions are identified and in one of the regions, the rate of deterioration of the sample is at a maximum. The work presents some interesting features of Weibull parameters as related to the condition of insulation studied in addition to its usual PD characteristics
Resumo:
The distributed implementation of an algorithm for computing fixed points of an infinity-nonexpansive map is shown to converge to the set of fixed points under very general conditions.
Resumo:
The logarithm of activity coefficients of the components of the ternary system is derived based on the Maclaurin infinite series, which is expressed in terms of the integral property of the system and subjected to appropriate boundary conditions. The derivation of the functions involves extensive summation of various infinite series pertaining to the first-order interaction coefficients that have been shown completely to remove any truncational error. Since the conventional equations involving interaction coefficients are internally inconsistent, a consistent form of the partial functions is developed in the article using the technique just described. The thermodynamic consistency of the functions based on the Maxwell and the Gibbs-Duhem relations has been established. The derived values of the logarithmic activity coefficients of the components have been found to be in agreement with the thermodynamic data of the Fe-Cr-Ni system at 1873 K and have been found to be independent of the compositional paths.
Resumo:
Mechanical fasteners introduce structural weakness, still they are an essential constituent of most structures as they permit interchangeability of parts and flexible construction programs; Variable temperature operations of Aerospace and Nuclear structures make it imperative to investigate the thermoelastic behaviour of joints. This paper explores analytically similar mechanical and thermal parameters to generalise the thermomechanical behaviour of a pin joint in an isotropic Sheet for a class of configurations. This generalization enables virtually direct application of existing information regarding joints under pure mechanical loading to joints subjected to combined thermomechanical loading, thus reducing the efforts of both the analyst and the designer by an order of magnitude. Copyright (C) 1996 Published by Elsevier Science Ltd.
Resumo:
We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.
Resumo:
Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of ACPs were purified from developing pisa seeds using DEAE-cellulose, Superose-6 FPLC and C-4 reversed phase HPLC chromatographic methods. In contrast, only a single form of ACP was present in ground nut seeds which was purified by anion-exchange and activated thiol-Sepharose 4B affinity chromatography. The two isoforms of ACPs from pisa showed nearly the same specific activity of 6,706 and 7,175 pmol per min per mg protein while ground nut ACP showed a specific activity of 3,893 pmol per min per mg protein when assayed using E. coli acyl-ACP synthetase and [1-C-14]palmitic acid. When compared with E. coli ACP, the purified ACPs from both the seeds showed considerable difference in their mobility in native PAGE, but showed similar mobility in SDS-PAGE under reducing conditions. In the absence of reducing agents formation of dimers was quite prominent. The ACPs from both the seed sources were acid- and heat-stable. The major isoform of pisa seed ACP and the ground nut ACP contain 91 amino acids with M(r) 11,616 and 1,228 respectively. However, there is significant variation in their amino acid composition. A comparision of the amino acid sequence in the N-terminal region of pisa and ground nut seed ACPs showed considerable homology between themselves and with other plant ACPs but not with E. coli ACP.
Resumo:
The relations between partial and integral properties of ternary solutions along composition trajectories suggested by Kohler, Colinet and Jacob, and along an arbitrary path are derived. The chemical potentials of the components are related to the slope of integral free energy by expressions involving the binary compositions generated by the intersections of the composition trajectory with the sides of the ternary triangle. Only along the Kohler composition trajectory it is possible to derive the integral free energy from the variation of the chemical potential of a single component with composition or vice versa. Along all other paths the differential of the integral free energy is related to two chemical potentials. The Gibbs-Duhem integration proposed by Darken for the ternary system uses the Kohler isogram. The relative merits of different limits for integration are discussed.