172 resultados para DDAP Dock Door Assignment Problem
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications on general purpose multi-core architectures. This model allows programmers to specify the structure of a program as a set of filters that act upon data, and a set of communication channels between them. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUs), as they support abundant parallelism in hardware. In this paper, we describe the challenges in mapping StreamIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs. We formulate this problem - both scheduling and assignment of filters to processors - as an efficient Integer Linear Program (ILP), which is then solved using ILP solvers. We also describe a novel buffer layout technique for GPUs which facilitates exploiting the high memory bandwidth available in GPUs. The proposed scheduling utilizes both the scalar units in GPU, to exploit data parallelism, and multiprocessors, to exploit task and pipelin parallelism. Further it takes into consideration the synchronization and bandwidth limitations of GPUs, and yields speedups between 1.87X and 36.83X over a single threaded CPU.
Resumo:
It is well known that the numerical accuracy of a series solution to a boundary-value problem by the direct method depends on the technique of approximate satisfaction of the boundary conditions and on the stage of truncation of the series. On the other hand, it does not appear to be generally recognized that, when the boundary conditions can be described in alternative equivalent forms, the convergence of the solution is significantly affected by the actual form in which they are stated. The importance of the last aspect is studied for three different techniques of computing the deflections of simply supported regular polygonal plates under uniform pressure. It is also shown that it is sometimes possible to modify the technique of analysis to make the accuracy independent of the description of the boundary conditions.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
Following Weisskopf, the kinematics of quantum mechanics is shown to lead to a modified charge distribution for a test electron embedded in the Fermi-Dirac vacuum with interesting consequences.
Resumo:
Given two simple polygons, the Minimal Vertex Nested Polygon Problem is one of finding a polygon nested between the given polygons having the minimum number of vertices. In this paper, we suggest efficient approximate algorithms for interesting special cases of the above using the shortest-path finding graph algorithms.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
We present a generic study of inventory costs in a factory stockroom that supplies component parts to an assembly line. Specifically, we are concerned with the increase in component inventories due to uncertainty in supplier lead-times, and the fact that several different components must be present before assembly can begin. It is assumed that the suppliers of the various components are independent, that the suppliers' operations are in statistical equilibrium, and that the same amount of each type of component is demanded by the assembly line each time a new assembly cycle is scheduled to begin. We use, as a measure of inventory cost, the expected time for which an order of components must be held in the stockroom from the time it is delivered until the time it is consumed by the assembly line. Our work reveals the effects of supplier lead-time variability, the number of different types of components, and their desired service levels, on the inventory cost. In addition, under the assumptions that inventory holding costs and the cost of delaying assembly are linear in time, we study optimal ordering policies and present an interesting characterization that is independent of the supplier lead-time distributions.