82 resultados para Cognitive agent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an underlay cognitive radio (CR) system, which can transmit when the primary is on, is curtailed by tight constraints on the interference it can cause to the primary receiver. Transmit antenna selection (AS) improves the performance of underlay CR by exploiting spatial diversity but with less hardware. However, the selected antenna and its transmit power now both depend on the channel gains to the secondary and primary receivers. We develop a novel Chernoffbound based optimal AS and power adaptation (CBBOASPA) policy that minimizes an upper bound on the symbol error probability (SEP) at the secondary receiver, subject to constraints on the average transmit power and the average interference to the primary. The optimal antenna and its power are presented in an insightful closed form in terms of the channel gains. We then analyze the SEP of CBBOASPA. Extensive benchmarking shows that the SEP of CBBOASPA for both MPSK and MQAM is one to two orders of magnitude lower than several ad hoc AS policies and even optimal AS with on-off power control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of adaptive group testing to find a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing-based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent subbands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios (CRs). The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent subbands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including noncontiguous spectrum hole search. Furthermore, we provide the analytical means to optimize the group tests with respect to the detection thresholds, number of samples, group size, and number of stages to minimize the detection delay under a given error probability constraint. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared with a conventional bin-by-bin energy detection scheme; the latter is, in fact, a special case of the group test when the group size is set to 1 bin. We validate our analytical results via Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonhomologous end joining (NHEJ) of DNA double strand breaks (DSBs) inside cells can be selectively inhibited by 5,6-bis-(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) which possesses anticancer properties. The hydrophobicity of SCR7 decreases its bioavailability which is a major setback in the utilization of this compound as a therapeutic agent. In order to circumvent the drawback of SCR7, we prepared a polymer encapsulated form of SCR7. The physical interaction of SCR7 and Pluronic (R) copolymer is evident from different analytical techniques. The in vitro cytotoxicity of the drug formulations is established using the MTT assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cognitive Radio (CR) is a promising technology which provides a novel way to subjugate the issue of spectrum underutilization caused due to the fixed spectrum assignment policies. In this paper we report the design and implementation of a soft-real time CR MAC, consisting of multiple secondary users, in a frequency hopping (Fit) primary scenario. This MAC is capable of sensing the spectrum and dynamically allocating the available frequency bands to multiple CR users based on their QoS requirements. As the primary is continuously hopping, a method has also been implemented to detect the hop instant of the primary network. Synchronization usually requires real time support, however we have been able to achieve this with a soft-real time technique which enables a fully software implementation of CR MAC layer. We demonstrate the wireless transmission and reception of video over this CR testbed through opportunistic spectrum access. The experiments carried out use an open source software defined radio package called GNU Radio and a basic radio hardware component USRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio (CR) network. However, unlike conventional relaying, the state of the links between the relay and the primary receiver affects the choice of the relay. Further, while the optimal amplify-and-forward (AF) relay selection rule for underlay CR is well understood for the peak interference-constraint, this is not so for the less conservative average interference constraint. For the latter, we present three novel AF relay selection (RS) rules, namely, symbol error probability (SEP)-optimal, inverse-of-affine (IOA), and linear rules. We analyze the SEPs of the IOA and linear rules and also develop a novel, accurate approximation technique for analyzing the performance of AF relays. Extensive numerical results show that all the three rules outperform several RS rules proposed in the literature and generalize the conventional AF RS rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A real-time cooperative localization system, utilizing dual foot-mounted low-cost inertial sensors and RF-based inter-agent ranging, has been developed. Scenario-based tests have been performed, using fully-equipped firefighters mimicking a search operation in a partly smoke-filled environment, to evaluate the performance of the TOR (Tactical lOcatoR) system. The performed tests included realistic firefighter movements and inter-agent distances, factors that are crucial in order to provide realistic evaluations of the expected performance in real-world operations. The tests indicate that the TOR system may be able to provide a position accuracy of approximately two to three meters during realistic firefighter operations, with only two smoke diving firefighters and one supervising firefighter within range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.