354 resultados para Charge density
Resumo:
This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.
Resumo:
Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.
Resumo:
In this paper, a comparative study of thin films of Er2O3 and Gd2O3 grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) under the identical conditions has been presented. beta-Diketonate complex of rate earth metals was used as precursor. Description on the evolution of the morphology, structure, optical, and electrical characteristics of films with respect to growth parameters and post-deposition annealing process has been presented. As-gown Gd2O3 films grow with <111> texture, whereas the texture of Er2O3 films strongly depends on the growth temperature (either <100> or <111>). Compositional analysis reveals that the Gd2O3 films grown at or above 500degreesC are carbon free whereas Er2O3 films at upto 525degreesC show the presence of heteroatoms and Er2O3 films grown above 525degreesC are carbon five. The effective dielectric constant is in the range of 7-24, while the fixed charge density is in the range - 10(11) to 10(10) CM-2 as extracted from the C-V characteristics. DC I-V study was carried out to examine the leakage behaviour of films. It reveals that the as-grown Gd2O3 film was very leakey in nature. Annealing of the films in oxidizing ambient for a period of 20 min results in a drastic improvement in the leakage behaviour. The presence of heteroatoms (such as carbon) and their effect on the properties of films are discussed.
Resumo:
This study presents unambiguous experimental evidence in support of the highly debated ``halogen bond donor'' character of organic fluorine. Two examples of intermolecular Cl center dot center dot center dot F contacts, with F-atom as halogen bond acceptor and donor, have been analyzed by in situ cryocrystallography and theoretical charge density studies.
Resumo:
Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.
Resumo:
In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.
Resumo:
We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation. We also find that 4n+2 EPs have large two-photon absorption cross sections compared to 4n EPs. The charge density rearrangement in the one-photon excited state is mostly at the pyrrole nitrogen site and at the meso carbon sites. In the two-photon states, the charge density rearrangement occurs mostly at the aza-ring sites. In the one-photon state, the C-C bond length in aza rings shows a tendency to become uniform. In the two-photon state, the bond distortions are on C-N bonds of the pyrrole ring and the adjoining C-C bonds which connect the pyrrole ring to the aza or meso carbon sites.
Resumo:
Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO-). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.
Resumo:
A novel thiophene derivative 7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one (DTCPA) is shown to exhibit high electrical conductivity (1.97 x 10(-2) +/- 0.0018 S/cm at RT) in the crystalline state. The material shows two orders of increase in conductivity from normal solid to single crystalline state. The crystal structure has S center dot center dot center dot S chalcogen bonding, C-H center dot center dot center dot O hydrogen bonding, and pi center dot center dot center dot pi stacking as the major intermolecular interactions. The nature and strength of the S center dot center dot center dot S interactions in this structure have been evaluated by theoretical charge density analysis, and its contribution to the crystal packing quantified by Hirshfeld surface analysis. Further, thermal and morphological characterizations have been carried out, and the second harmonic generation (SHG) efficiency has been measured using the Kurtz-Perry method.
Resumo:
We study a system of hard-core boson on a one-dimensional lattice with frustrated next-nearest-neighbor hopping and nearest-neighbor interaction. At half filling, for equal magnitude of nearest- and next-nearest-neighbor hopping, the ground state of this system exhibits a first-order phase transition from a bond-ordered solid to a charge-density-wave solid as a function of the nearest- neighbor interaction. Moving away from half filling we investigate the system at incommensurate densities, where we find a supersolid phase which has concurrent off-diagonal long-range order and density-wave order which is unusual in a system of hard-core bosons in one dimension. Using the finite-size density-matrix renormalization group method, we obtain the complete phase diagram for this model.
Resumo:
The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q(1) and q(2), which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties. Copyright (C) EPLA, 2014
Resumo:
We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low-entropy state, a band insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model including fluctuations and augmented by a variational quantum Monte Carlo calculation of the ground state, we show that the superfluid state obtained has a high transition temperature of the order of the hopping energy. Our system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory realization of this model via an orthogonally shaken optical lattice bilayer.
Resumo:
We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.
Resumo:
Polyelectrolytes are charged polymer species which electrostatically adsorb onto surfaces in a layer by layer fashion leading to the sequential assembly of multilayer structures. It is known that the morphology of weak polyelectrolyte structures is strongly influenced by environmental variables such as pH. We created a weak polyelectrolyte multilayer structure (similar to 100 nm thick) of cationic polymer poly-allylamine hydrochloride (PAH) and an anionic polymer poly-acrylic acid (PAA) on an etched clad fiber Bragg grating (EFBG) to study the pH induced conformational transitions in the polymer multilayers brought about by the variation in charge density of weak polyelectrolyte groups as a function of pH. The conformational changes of the polyelectrolyte multilayer structure lead to changes in optical density of the adsorbed film which reflects in the shift of the Bragg wavelength from the EFBG. Using the EFBG system we were able to probe reversible and irreversible pH induced transitions in the PAH/PAA weak polyelectrolyte system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fmoc-Leu-psiCH2NCS] undergoes a reversible isomorphous phase transition upon cooling. The crystal structure at 100 K displays a short N=C=S center dot center dot center dot N=C=S intermolecular interaction, which has been characterized based on experimental charge density analysis, as a stabilizing interaction with both sigma-holes and pi-holes acting cooperatively.