200 resultados para C-17 (Jet transport)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied magneto-transport and optical properties of Ga1-xMnxSb crystals (x = 0.01, 0.02, 0.03 and 0.04) grown by horizontal Bridgman method. Negative magnetoresistance and anomalous Hall effect have been observed below 10K. Temperature dependence of magnetization measurement shows a magnetic ordering below 10K which could arise from Ga1-xMnxSb alloy formation. Also, saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters. Reduction in band gap is observed with increasing Mn concentration in the crystals. Temperature dependence of band gap follows Bose-Einstein's model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported by Pati et al. (J. Am. Chem. Soc. 2005, 127, 3496) that coordination with a transition metal can stabilize the “antiaromatic”, all-metal compound Al4Li4. Here, we report that it can also be stabilized by capping with a main group element like C and its isoelectronic species BH. Our calculations of binding energy, nuclear independent chemical shift, energy decomposition analysis, and molecular orbital analysis support the capping-induced stability, reduction of bond length alternation, and increase of aromaticity of these BH/C-capped Al4Li4 systems. The interaction between px and py orbitals of BH/C and the HOMO and LUMO of Al4Li4 is responsible for the stabilization. Our calculations suggest that capping can introduce fluxionality at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanofibers of 50–500 nm diameter and several micrometer length were synthesized by high-temperature pyrolysis of dihydro-2,5-furandione (C4H4O3) in the temperature range of 600–980 °C. The formation of both graphitic and non-graphitic structured carbon fibers was observed in high-resolution transmission electron microscope. The Raman spectra of the samples showed the presence of both the D and G bands of varying intensity and sharpness. The low-temperature electrical transport studies on the samples have shown interesting metal–insulator transitions. The films showed variable range hopping conduction in the insulating regime and power law behavior in the critical regime at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of delta pam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave sources used in present day applications are either multiplied source derived from basic quartz crystals, or frequency synthesizers. The frequency multiplication method increases FM noise power considerably, and has very low efficiency in addition to being very complex and expensive. The complexity and cost involved demands a simple, compact and tunable microwave source. A tunable dielectric resonator oscillator(DRO) is an ideal choice for such applications. In this paper, the simulation, design and realization of a tunable DRO with a center frequency of 6250 MHz is presented. Simulation has been carried out on HP-Ees of CAD software. Mechanical and electronic tuning features are provided. The DRO operates over a frequency range of 6235 MHz to 6375 MHz. The output power is +5.33 dBm at centre frequency. The performance of the DRO is as per design with respect to phase noise, harmonic levels and tunability. and hence, can conveniently be used for the intended applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct electrochemistry of cytochrome c (cyt-c) has been investigated on exfoliated graphite (EG) electrodes. The as-polished and roughened (using SiC emery sheet) EG surfaces are inactive for the direct electron transfer. However, when the EG electrode was sonicated before the experiment, a pair of redox waves were obtained for freely diffusing cyt-c in the solution phase. The formal potential was found to be 0.01 V (vs. SCE) in 0.1 M phosphate buffer at a pH of 7.1. The electrochemical response for the adsorbed cyt-c on sonicated EG electrodes, which is shown to have carbonyl functional groups on its surface, shows nearly reversible voltammograms in the same electrolyte. However, the formal potential in the adsorbed state is more negative than that observed for the solution phase cyt-c. A structure based on an open heme conformation proposed by Hildebrandt and Stockburger is probably present on the EG surface. It is suggested that the electrochemistry at the EG electrode is essentially governed by favourable electrostatic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298-550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)(2)CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic transport in the high temperature paramagnetic regime of the colossal magnetoresistive oxides, La(1-x)A(x)MnO(3), A=Ca, Sr, Ba, x similar or equal to 0.1-0.3, has been investigated using resistivity measurements. The main motivation for this work is to relook into the actual magnitude of the activation energy for transport in a number of manganites and study its variation as a function of hole doping (x), average A-site cation radius (< r(A)>), cationic disorder (sigma(2)) and strain (epsilon(zz)). We show that contrary to current practice, the description of a single activation energy in this phase is not entirely accurate. Our results clearly reveal a strong dependence of the activation energy on the hole doping as well as disorder. Comparing the results across different substituent species with different < r(A)> reveals the importance of sigma(2) as a metric to qualify any analysis based on (r(A)). (c) 2006 Elsevier Ltd. All rights reserved.