12 resultados para C-17 (Jet transport)

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of terl-butylperoxide complexes of hafnium, Cp*2Hf(R)(OOCMe3) (Cp* = ((η5-C5Me5); R = Cl, H, CH3, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2, CH=CHCMe3, C6H5, meta-C6H3(CH2)2) and Cp*(η5-C5(CH3)4CH2CH2CH2)Hf(OOCMe3), has been synthesized. One example has been structurally characterized, Cp*2Hf(OOCMe3)CH2CH3 crystallizes in space group P21/c, with a = 19.890(7)Å, b = 8.746(4)Å, c = 17.532(6)Å, β = 124.987(24)°, V = 2498(2)Å3, Z = 4 and RF = 0.054 (2222 reflections, I > 0). Despite the coordinative unsaturation of the hafnium center, the terl-butylperoxide ligand is coordinated in a mono-dentate ligand. The mode of decomposition of these species is highly dependent on the substituent R. For R = H, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2 a clean first order conversion to Cp*2Hf(OCMe3)(OR) is observed (for R CH2CH3, ΔHǂ = 19.6 kcal•mol-1, ΔSǂ = -13 e.u.). These results are discussed in terms of a two step mechanism involving η2-coordination of the terl-butylperoxide ligand. Homolytic O-O bond cleavage is observed upon heating of Cp*2Hf(OOCMe3) R (R = C6H6, meta-C6H3(CH3)2). In the presence of excess 9,10-dihydroanthracene thermolysis of Cp*2Hf(OOCMe3)C6H6 cleanly affords Cp*2Hf(C6H6)OH and HOCMe3 (ΔHǂ = 22.6 kcal•mol-1, ΔSǂ = -9 e.u.). The O-O bond strength in these complexes is thus estimated to be 22 kcal•mol-1.

Cp*2Ta(CH2)H, Cp*2Ta(CHC6H5)H, Cp*2Ta(C6H4)H, Cp*2Ta(CH2=CH2)H and Cp*2Ta(CH2=CHMe)H react, presumably through Cp*2Ta-R intermediates, with H2O to give Cp*2Ta(O)H and alkane. Cp*2Ta(O)H was structurally characterized: space group P21/n, a= 13.073(3)Å, b = 19.337(4)Å, c = 16.002(3)Å, β = 108.66(2)°, V = 3832(1)Å3, Z = 8 and RF = 0.0672 (6730 reflections). Reaction of terlbutylhydroperoxide with these same starting materials ultimately yields Cp*2Ta(O)R and HOCMe3. Cp*2Ta(CH2=CHR)OH species are proposed as intermediates in the olefin hydride reactions. Cp*2Ta(O2)R species can be generated from the reaction of the same starting materials and O2. Lewis acids have been shown to promote oxygen insertion in these complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of recent experiments have suggested the possibility of a highly inelastic resonance in K+p scattering. To study the inelastic K+p reactions, a 400 K exposure has been taken at the L.R.L. 25 inch bubble chamber. The data are spread over seven K+ momenta between 1.37 and 2.17 GeV/c.

Cross-sections have been measured for the reaction K+p → pK°π+ which is dominated by the quasi-two body channels K∆ and K*N. Both these channels are strongly peripheral, as at other momenta. The decay of the ∆ is in good agreement with the predictions of the rho-photon analogy of Stodolsky and Sakurai. The data on the K*p channel show evidence of both pseudo scalar and vector exchange.

Cross-sections for the final state pK+π+π- shows a strong contribution from the quasi-two body channel K*∆. This reaction is also very peripheral even at threshold. The decay angular distributions indicate the reaction is dominated as at higher momenta by a pion exchange mechanism. The data are also in good agreement with the quark model predictions of Bialas and Zalewski for the K* and ∆ decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by means of perturbed equilibrium techniques. We have prepared a three electron reduced, CO inhibited form of the enzyme in which cytochrome a and copper A are partially reduced an in intramolecular redox equilibrium. When these samples were photolyzed using a nitrogen laser (0.6 µs, 1.0 mJ pulses) changes in absorbance at 598 nm and 830 nm were observed which are consistent with a fast electron from cytochrome a to copper A. The absorbance changes at 598 nm have an apparent rate of 17,200 ± 1,700 s^(-1) (1σ), at pH 7.0 and 25.5 °C. These changes were not observed in either the CO mixed valence or CO inhibited fully reduced forms of the enzyme. The rate is fastest at about pH 8.0, and falls off in either direction, and there is a small, but clear temperature dependence. The process was also observed in the cytochrome c -- cytochrome c oxidase high affinity complex.

This rate is far faster than any rate measured or inferred previously for the cytochrome a -- copper A electron equilibration, but the interpretation of these results is hampered by the fact that the relaxation could only be followed during the time before CO became rebound to the oxygen binding site. The meaning of our our measured rate is discussed, along with other reported rates for this process. In addition, a temperature-jump experiment on the same system is discussed.

We have also prepared a partially reduced, cyanide inhibited form of the enzyme in which cytochrome a, copper A and copper B are partially reduced and in redox equilibrium. Warming these samples produced absorbance changes at 605 nm which indicate that cytochrome a was becoming more oxidized, but there were no parallel changes in absorbance at 830 nm as would be expected if copper A was becoming reduced. We concluded that electrons were being redistributed from cytochrome a to copper B. The kinetics of the absorbance changes at 605 nm were investigated by temperature-jump methods. Although a rate could not be resolved, we concluded that the process must occur with an (apparent) rate larger than 10,000 s^(-1).

During the course of the temperature-jump experiments, we also found that non-redox related, temperature dependent absorbance changes in fully reduced CO inhibited cytochrome c oxidase, and in the cyanide mixed valence enzyme, took place with an (apparent) rate faster that 30,000 s^(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-most cell that forms the vulva, P7.p.

The mirror symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing Wnt signals control the division patterns of the VPCs by controlling the localization of SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 and Van Gogh/VANG-1. All three transmembrane proteins control orientation through the localization of the SYS-1.

The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the posterior body wall muscle of the worm as well as the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. These results illustrate the first evidence of the interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity as well as highlight the promiscuous nature of Wnt signaling within C. elegans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O2 binding constants ~ 3x greater than those of myoglobin. The resistance of O2-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.

UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH- coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H2O heme ligation. Significant differences in the pH dependence of the 1H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.

1H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the 1H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I present a study of W pair production in e+e- annihilation using fully hadronic W+W- events. Data collected by the L3 detector at LEP in 1996-1998, at collision center-of-mass energies between 161 and 189 GeV, was used in my analysis.

Analysis of the total and differential W+W- cross sections with the resulting sample of 1,932 W+W- → qqqq event candidates allowed me to make precision measurements of a number of properties of the W boson. I combined my measurements with those using other W+W- final states to obtain stringent constraints on the W boson's couplings to fermions, other gauge bosons, and scalar Higgs field by measuring the total e+e- → W+W- cross section and its energy dependence

σ(e+e- → W+W-) =

{2.68+0.98-0.67(stat.)± 0.14(syst.) pb, √s = 161.34 GeV

{12.04+1.38-1.29(stat.)± 0.23(syst.) pb, √s = 172.13 GeV

{16.45 ± 0.67(stat.) ± 0.26(syst.) pb, √s = 182.68 GeV

{16.28 ± 0.38(stat.) ± 0.26(syst.) pb, √s = 188.64 GeV

the fraction of W bosons decaying into hadrons

BR(W →qq') = 68.72 ± 0.69(stat.) ± 0.38(syst.) %,

invisible non-SM width of the W boson

ΓinvisibleW less than MeV at 95% C.L.,

the mass of the W boson

MW = 80.44 ± 0.08(stat.)± 0.06(syst.) GeV,

the total width of the W boson

ΓW = 2.18 ± 0.20(stat.)± 0.11(syst.) GeV,

the anomalous triple gauge boson couplings of the W

ΔgZ1 = 0.16+0.13-0.20(stat.) ± 0.11(syst.)

Δkγ = 0.26+0.24-0.33(stat.) ± 0.16(syst.)

λγ = 0.18+0.13-0.20(stat.) ± 0.11(syst.)

No significant deviations from Standard Model predictions were found in any of the measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.

Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.

The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.

The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.

The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.

This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.

As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.

The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.

Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terphenyl diphosphines bearing pendant ethers were prepared to provide mechanistic insight into the mechanism of activation of aryl C–O bonds with Group 9 and Group 10 transition metals. Chapters 2 and 3 of this dissertation describe the reactivity of compounds supported by the model phosphine and extension of this chemistry to heterogenous C–O bond activation.

Chapter 2 describes the synthesis and reactivity of aryl-methyl and aryl-aryl model systems. The metallation of these compounds with Ni, Pd, Pt, Co, Rh, and Ir is described. Intramolecular bond activation pathways are described. In the case of the aryl-methyl ether, aryl C–O bond activation was observed only for Ni, Rh, and Ir.

Chapter 3 outlines the reactivity of heterogenous Rh and Ir catalysts for aryl ether C–O bond cleavage. Using Rh/C and an organometallic Ir precursor, aryl ethers were treated with H2 and heat to afford products of hydrogenolysis and hydrogenation. Conditions were modified to optimize the yield of hydrogenolysis product. Hydrogenation could not be fully suppressed in these systems.

Appendix A describes initial investigations of bisphenoxyiminoquinoline dichromium compounds for selective C2H4 oligomerization to afford α-olefins. The synthesis of monometallic and bimetallic Cr complexes is described. These compounds are compared to literature examples and found to be less active and non-selective for production of α-olefins.

Appendix B describes the coordination chemistry of terphenyl diphosphines, terphenyl bisphosphinophenols, and biphenyl phosphinophenols proligands with molybdenum, cobalt, and nickel. Since their synthesis, terphenyl diphosphine molybdenum compounds have been reported to be good catalysts for the dehydrogenation of ammonia borane. Biphenyl phosphinophenols are demonstrated provide both phosphine and arene donors to transition metals while maintaining a sterically accessible coordination sphere. Such ligands may be promising in the context of the activation of other small molecules.

Appendix C contains relevant NMR spectra for the compounds presented in the preceding sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of the study, an RF coupled, atmospheric pressure, laminar plasma jet of argon was investigated for thermodynamic equilibrium and some rate processes.

Improved values of transition probabilities for 17 lines of argon I were developed from known values for 7 lines. The effect of inhomogeneity of the source was pointed out.

The temperatures, T, and the electron densities, ne , were determined spectroscopically from the population densities of the higher excited states assuming the Saha-Boltzmann relationship to be valid for these states. The axial velocities, vz, were measured by tracing the paths of particles of boron nitride using a three-dimentional mapping technique. The above quantities varied in the following ranges: 1012 ˂ ne ˂ 1015 particles/cm3, 3500 ˂ T ˂ 11000 °K, and 200 ˂ vz ˂ 1200 cm/sec.

The absence of excitation equilibrium for the lower excitation population including the ground state under certain conditions of T and ne was established and the departure from equilibrium was examined quantitatively. The ground state was shown to be highly underpopulated for the decaying plasma.

Rates of recombination between electrons and ions were obtained by solving the steady-state equation of continuity for electrons. The observed rates were consistent with a dissociative-molecular ion mechanism with a steady-state assumption for the molecular ions.

In the second part of the study, decomposition of NO was studied in the plasma at lower temperatures. The mole fractions of NO denoted by xNO were determined gas-chromatographically and varied between 0.0012 ˂ xNO ˂ 0.0055. The temperatures were measured pyrometrically and varied between 1300 ˂ T ˂ 1750°K. The observed rates of decomposition were orders of magnitude greater than those obtained by the previous workers under purely thermal reaction conditions. The overall activation energy was about 9 kcal/g mol which was considerably lower than the value under thermal conditions. The effect of excess nitrogen was to reduce the rate of decomposition of NO and to increase the order of the reaction with respect to NO from 1.33 to 1.85. The observed rates were consistent with a chain mechanism in which atomic nitrogen and oxygen act as chain carriers. The increased rates of decomposition and the reduced activation energy in the presence of the plasma could be explained on the basis of the observed large amount of atomic nitrogen which was probably formed as the result of reactions between excited atoms and ions of argon and the molecular nitrogen.