340 resultados para BISMUTH-MODIFIED PT(111)
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
We report the synthesis and structural characterization of ferroelectric bismuth vanadate (Bi2VO5.5) (BVO) nanotubes within the nanoporous anodic aluminum oxide (AAO) templates via sol-gel method. The as-prepared BVO nanotubes were characterized by X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HRTEM) and the stoichiometry of the nanotubes was established by energy-dispersive X-ray spectroscopy (EDX). Postannealed (675 degrees C for 1 h), BVO nanotubes were a polycrystalline and the XRD studies confirmed the crystal structure to be orthorhombic. The uniformity in diameter and length of the nanotubes as reveled by the TEM and SEM suggested that these were influenced to a guest extent by the thickness and pore diameter of the nanoporous AAO template. EDX analysis demonstrated the formation of stoichiometric Bi2VO5.5 phase. HRTEM confirmed that the obtained BVO nanotubes were made up of nanoparticles of 5-9 nm range. The possible formation mechanism of nanotubes was elucidated.
Resumo:
Seven different shaped modified proportional V-notches were designed and pertinent data for their use are given in tables 1 - 4. It is shown that the indication accuracies of these weirs are more than that of the conventional V-notch. For five of the designed weirs the indication accuracies are more than that of the conventional rectangular weir at lower heads of flow. All these proportional weirs, except the parabolic based weir, have added advantages over the V-notch in regard to fixing and finding the crest level. Experiments with five weirs (four symmetrical and one unsymmetrical) having rectangular bases and one (symmetrical) with a parabolic base show very good agreement with the theory and give consistent values for the coefficient of discharge, Cd, varying between 0.588 and 0.605, within the ranges of the experiments.
Resumo:
Structural, microstructural, and dielectric studies have been carried out on Pr-modified PbTiO3. A comparative analysis with La-modified PbTiO3 suggests that for chemical modification by same amount, the Pr-modified system has larger tetragonal strain and Curie point. No clear feature of relaxor ferroelectric state is observed for Pr concentration as high as x=0.35, suggesting that Pr modification is less effective, as compared to La-modification, in inducing a relaxor ferroelectric state. Results suggest that inspite of increased chemical disorder, Pr modification partly tends to restore the ferroelectric distortion of the lattice through partial occupancy of the Pr4+ ions on the Ti4+ sites.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
Total tRNAs isolated from N2- and NH4(+)-grown Azospirillum lipoferum cells were compared with respect to amino acid acceptance, isoacceptor tRNA species levels and extent of nucleotide modifications. Amino-acylation of these two tRNA preparations with ten different amino acids indicated differences in the relative acceptor activities. Comparison of aminoacyl-tRNA patterns by RPC-5 column chromatography revealed no qualitative differences in the elution profiles. However, quantitative differences in the relative amounts of some isoacceptors were observed. These results indicate that alterations of relative amounts of functional tRNA species occur to match cellular requirements of the bacterial cells using N2 or NH4+ as nitrogen source. In addition, the content of modified nucleotides in total tRNAs of N2- and NH4(+)-grown cells was determined. In the NH4(+)-grown cells, content of most of the modified nucleotides decreased significantly. Based upon these results, the relationship of chargeability of tRNAs to base modifications is discussed.
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis and properties of sphere-shaped microscale aggregates of bismuth telluride nanoplates. We obtain porous microspheres by reducing bismuth chloride and orthotelluric acid with hydrazine in the presence of thioglycolic acid-which serves as the shape-and size-directing agent-followed by room-temperature aging-which promotes nanoplate aggregation. Thin film assemblies of the nanoplate microspheres exhibit n-type behavior due to sulfur doping and a Seebeck coefficient higher than that reported for assemblies of chalcogenide nanostructures. Adaptation of our scalable approach to synthesize and hierarchically assemble nanostructures with controlled doping could be attractive for tailoring novel thermoelectric materials for applications in high-efficiency refrigeration and harvesting electricity from heat.
Resumo:
A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.
Resumo:
Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.
Resumo:
Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
The observation of (A-X) system of BiF has been extended up to λ 5316 and twenty new bands belonging to this system have been recorded. The band heads could be represented by the following equation: {Mathematical expression} Seven other faint bands in the region λ 5316-5492 have also been reported, which, however, could not be classified. By our analysis of the present data and from known thermochemical data it has been deduced that the ground state dissociation energy is, in all probability, around 20000 cm.-1 (∼2·5 ev.) and that the dissociation products are the normal Bi and F atoms. The dissociation energy of the upper state and the correlation rules have been used to show that the dissociation products in the upper state are very likely to be Bi atom in the excited state2D3/2 and F atom in its ground state (2P3/2).
Resumo:
The emission spectrum of bismuth monobromide has been investigated and a vibrational analysis of the A→X system has been made. About 286 bands were recorded in the region λλ 4595–6063 and the isotope effect due to Br79 and Br81 was observed in about 87 bands. A value of 2·74 ev. for the dissociation energy of the excited state has been obtained and arguments have been given to show that the dissociation products in the excited state are Bi(4S3/2) and Br(2P3/2) and that those of the ground state are most probably Bi (4S3/2) and Br (2P1/2) atoms.