198 resultados para Astrophysical Jet
Resumo:
This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.
Resumo:
The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
Resumo:
Photometric and spectral evolution of the Type Ic supernova SN 2007ru until around 210 days after maximum are presented. The spectra show broad spectral features due to very high expansion velocity, normally seen in hypernovae. The photospheric velocity is higher than other normal Type Ic supernovae (SNe Ic). It is lower than SN 1998bw at similar to 8 days after the explosion, but is comparable at later epochs. The light curve (LC) evolution of SN 2007ru indicates a fast rise time of 8 +/- 3 days to B-band maximum and postmaximum decline more rapid than other broad-line SNe Ic. With an absolute V magnitude of -19.06, SN 2007ru is comparable in brightness with SN 1998bw and lies at the brighter end of the observed SNe Ic. The ejected mass of Ni-56 is estimated to be similar to 0.4 M-circle dot. The fast rise and decline of the LC and the high expansion velocity suggest that SN 2007ru is an explosion with a high kinetic energy/ejecta mass ratio (E-K/M-ej). This adds to the diversity of SNe Ic. Although the early phase spectra are most similar to those of broad-line SN 2003jd, the [O I] line profile in the nebular spectrum of SN 2007ru shows the singly peaked profile, in contrast to the doubly peaked profile in SN 2003jd. The singly peaked profile, together with the high luminosity and the high expansion velocity, may suggest that SN 2007ru could be an aspherical explosion viewed from the polar direction. Estimated oxygen abundance 12 + log(O/H) of similar to 8.8 indicates that SN 2007ru occurred in a region with nearly solar metallicity.
Resumo:
The atomic hydrogen gas (H I) disk in the outer region (beyond similar to 10 kpc from the center) of Milky Way can provide valuable information about the structure of the dark matter halo. The recent three-dimensional thickness map of the outer H I disk from the all sky 21 cm line Leiden/Argentine/Bonn survey, gives us a unique opportunity to investigate the structure of the dark matter halo of Milky Way in great detail. A striking feature of this new survey is the north-south (N-S) asymmetry in the thickness map of the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the total potential of the Galaxy, we derive the model thickness map of the H I gas. We show that simple axisymmetric halo models, such as softened isothermal halo (producing a flat rotation curve with V-c similar to 220 km s(-1)) or any halo with density falling faster than the isothermal one, are not able to explain the observed radial variation of the gas thickness. We also show that such axisymmetric halos along with different H I velocity dispersion in the two halves, cannot explain the observed asymmetry in the thickness map. Amongst the nonaxisymmetric models, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo with reasonable H I velocity dispersion fails to explain the N-S asymmetry satisfactorily. However, we show that by superposing a second harmonic (m = 2) out of phase onto a purely lopsided halo, e. g., our best fit and more acceptable model A (with parameters epsilon(1)(h) = 0.2, epsilon(2)(h) = 0.18, and sigma(H I) = 8.5 km s(-1)) can provide an excellent fit to the observation and reproduce the N-S asymmetry naturally. The emerging picture of the asymmetric dark matter halo is supported by the. cold dark matter halos formed in the cosmological N-body simulation.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
Recent laboratory investigations have shown that rotation and (streamwise) curvature can have spectacular effects on momentum transport in turbulent shear flows. A simple model that takes account of these effects (based on an analogy with buoyant flows) utilises counterparts of the Richardson number Rg and the Monin-Oboukhov length. Estimates of Rg for meanders in ocean currents like the Gulf Stream show it to be of order 1 or more, while laboratory investigations reveal strong effects even at |Rg|∼0·1. These considerations lead to the conclusion that at a cyclonic bend in the Gulf Stream, a highly unstable flow in the outer half of the jet rides over a highly stable flow in the inner half. It is conjectured that the discrepancies noticed between observation and the various theories of Gulf Stream meanders, and such phenomena as the observed detachment of eddies from the Gulf Stream, may be due to the effects of curvature and rotation on turbulent transport.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
THE PROCESS of mass transfer from saturated porous surfaces virtual origin ; exposed to turbulent air streams finds many practical applitransverse coordinate; cations. In many cases, the air stream will be in the form of a height of nozzle above flat plate--radial wall jet; wall jet over the porous surface. The aerodynamics of both plane and radial wall jets have been investigated in detail and a vast amount of literature is available on the subject [l-3].
Resumo:
he notion of the gravity-induced electric field has been applied to an entire self-gravitating massive body. The resulting electric polarization of the otherwise neutral body, when taken in conjunction with the latter's rotation, is shown to generate an axial-magnetic field of the right type and order of magnitude for certain astrophysical objects. In the present treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approximation while the electrodynamics of the continuous medium is treated in the nonrelativistic approximation.
Resumo:
Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.
Resumo:
The possibility of observing gravitational spin precession due to spin-orbit coupling in a binary pulsar system is considered. An analysis is presented which can aid in delineating the relevant physical effects from pulse-structure data. In this analysis, it is assumed that the pulsar radiation emanates from a cone whose axis is tilted with respect to the axis of rotation. It is found that the time-averaged pulse width and polarization sweep vary periodically with time and that this variation has a periodicity of the order of the spin-precession frequency averaged over a complete revolution. It is concluded that for an orbital period of about 180 years, it suffices to measure polarization data with an accuracy of a few parts in 100 over a period of six months to a year in order to uncover the effects of spin precession. The consistency of the analysis is checked, and the calculations are applied to a recently discovered binary pulsar.
Resumo:
The opposed-jet diffusion flame has been considered with four step reaction kinetics for hydrogenoxygen system. The studies have revealed that the flame broadening reduces and maximum temperature increases as pressure increases. The relative importance of different reaction steps have been brought out in different regions (unstable, near extinction and equilibrium). The present studies have also led to the deduction of the oveall reaction rate constants of an equivalent single step reaction using matching of a certain overall set of parameters for four step reaction scheme and equivalent single step reaction.
Resumo:
We study the energetics of the accretion-induced outflow and then plausible jet around black holes/compact objects using a newly developed disc-outflow coupled model. Inter-connecting dynamics of outflow and accretion essentially upholds the conservation laws. The energetics depend strongly on the viscosity parameter α and the cooling factor f which exhibit several interesting features. The bolometric luminosities of ultra-luminous X-ray binaries (e.g. SS433) and family of highly luminous AGNs and quasars can be reproduced by the model under the super-Eddington accretion flows. Under appropriate conditions, low-luminous AGNs (e.g. Sagittarius A*) also fit reasonably well with the luminosity corresponding to a sub-Eddington accretion flow with f→1.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.