332 resultados para ~1H-NMR
Resumo:
The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides
Resumo:
Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4
Resumo:
Complexes of the formulae [(-Cp)Ru(PPh3)(2-PPH)]Cl and [(Cp)Ru(PPh3) (py)(1-PPH)]Cl were prepared by reacting pyridyl-2-phenylhydrazone [PPH, C5H4N-2-CH=NNHPh] with (-Cp)Ru(PPh3)2Cl and (-Cp)Ru(PPh3)(py)Cl, respectively. In these complexes the PPH ligand displays bidentate chelating and unidentate modes of bonding. The molecular structure of [(-Cp)Ru(PPh3)(2-PPH)](ClO4)·CH2Cl2 was determined by X-ray crystallography. In this complex the metal is bonded to the N-pyridyl and N-imine atoms of the chelating ligand. 1H NMR spectral data suggests that PPH is bonded to ruthenium through the pyridine moiety of the PPH ligand in [(η-Cp)Ru(PPh3)(py)(η1-PPH)]Cl.
Resumo:
Novel epoxy resins of various thiocarbonohydrazones have been synthesized by reacting the aldehyde or ketone derivatives of thiocarbohydrazide with excess of epichlorohydrin. The resins have been characterized by elemental analyses, epoxy equivalents, 1H-NMR and IR spectra, thermal analyses, and viscosity measurements. Curing of the resins has been carried out by mixing with thiocarbohydrazide or ethylenediamine and heating at 80°C for 48 h. A comparison of the thermal stability of the cured resin samples has been made.
Resumo:
Uranyl complexes of two Schiff bases, semicarbazone and hydrazone containing OON donor atoms have been synthesized and characterized on the basis of NMR, IR and electronic spectral studies, conductance, magnetic susceptibility and thermogravimetric data. The 1H NMR spectrum of the semicarbazone complex shows low field signals due to OH, NH and ---CH=N groups at 10.23, 9.31 and 8.17 ppm, respectively. The aromatic protons appear in the range 7.74–7.40 ppm. On complexation with U(VI) the signals due to OH and NH disappear evidently due to their participation in coordination. The coordination number of the o-vanillin semicarbazone (oVSC) complex is 6 whereas, that of the o-vanillin isonicotinic acid hydrazone (oVINAH) complex is 8, in addition to the two oxygen atoms already bonded to U(VI) in each species. The thermograms show the presence of 3 and 2 water molecules in these complexes, respectively and the IR spectral data also support the above conclusion. Suitable structures have been assigned.
Resumo:
Flame-retardant poly(pyromellitic imide aryl phosphoramide-ester)s were synthesized by interfacial polycondensation of N,N?-bis(p-hydroxyphenyl)pyromellitic diimide with aryl phosphoramidic dichlorides. The polymers were characterized by IR and 1H-NMR spectroscopy. The molecular composition was confirmed by elemental analysis. The thermal stability and flammability of the polymers were studied by thermogravimetry and limiting oxygen index, respectively. Durch Grenzflächen-Polykondensation von N,N?-bis(4-hydroxyphenyl)pyromellitsäurediimid mit Dichloriden verschiedener Phosphoramide wurden flammhemmende Polymere erhalten. Diese wurden mittels IR- und 1H-NMR-Spektroskopie und Elementaranalyse charakterisiert. Thermische Stabilität und Entflammbarkeit wurden thermogravimetrisch bzw. durch Bestimmung des Sauerstoff-Indexes untersucht.
Resumo:
Blue coloured, unstable, essentially diamagnetic and non-electrolytic diruthenium(III) complexes of the formation [Ru2O(O2CR)4(en)2(PPh3)2] were prepared by reacting [Ru2O(O2CR)4(PPh3)2] with 1,2-diaminoethane (en) in CH2Cl2 (R = C6H4-p-X; X = H, Me and OMe). The molecular structure of the complexes is proposed as [{(?1-O2CR)(?1-en)(PPH3)Ru}2(?-O)(?-O2CR)2] based on the 1H NMR spectral data. The electronic spectra of the complexes display a band near 569 nm with a shoulder at 630 nm. In CH2Cl2-0.1 M [Bun4N]ClO4, the complexes exhibit redox couples Ru2III,III/Ru2III,IV and Ru2III,IV/Ru2IV,IV near 0.1 and 1.2 V (vs SCE), respectively. The potentials are the lowest among diruthenium(III) complexes with a similar core structure.
Resumo:
Tri(amino)silanes were prepared by the condensation of trichlorosilane with secondary amines in 1:6 molar ratio. Reactions of trichlorosilane with pyrrolidine, piperidine, hexamethyleneimine, morpholine, N-methylpiperazine and diethylamine afford the tri(amino)silanes in nearly quantitative yields. Their physical and spectroscopic properties are discussed. All these compounds are highly sensitive to moisture and hydrolyse to silica and the respective amine with the evolution of hydrogen. The compounds have been characterised by IR, 1H NMR, [1H]29Si NMR spectroscopic methods and CHN elemental analysis.
Resumo:
Diastereomers (SRu,Sc)-1a and (RRu,Sc)-1b, in a ratio of 85: 15 and formulated as [Ru(η-MeC6H4Pri-p)Cl(L*)], have been prepared by treating [{Ru(η-MeC6H4Pri-p)Cl2}2] with the sodium salt of (S)-α-methylbenzylsalicylaldimine (HL*) in tetrahydrofuran at –70 °C. The reaction of 1(1a+1b) with AgClO4 in acetone followed by an addition of PPh3 or 4-methylpyridine (4Me-py) leads to the formation of adducts [Ru(η-MeC6H4Pri-p)(PPh3)(L*)]ClO42[(SRu,Sc)2a, (FRu,Sc)2b] and [Ru(η-MeC6H4Pri-p)(4Me-py)(L*)]ClO43[(SRu,Sc)3a, (RRu,Sc)3b] in the diastereomeric ratios (SRu,Sc) : (RRu,Sc) of 2 : 98 and 76 : 24, respectively. Complex 1 crystallises with equal numbers of 1a and 1b molecules in an asymmetric unit of monoclinic space group P21 with a= 10.854(1), b= 17.090(1), c= 12.808(4)Å, β= 110.51(1)°, and Z= 4. The structure was refined to R= 0.0552 and R′= 0.0530 with 2893 reflections having I[gt-or-equal] 1.5σ(I). The absolute configurations of the chiral centres in the optically pure single crystal of the PPh3 adduct have been obtained from an X-ray study. Crystals of formulation [Ru(η-MeC6H4Pri-p)-(PPh3)(L*)]2[ClO4][PF6]·1.5 CHCl3, obtained in presence of both ClO4 and PF6 anions, belong to the non-centric triclinic space group P1 with a= 10.852(2), b= 14.028(1), c= 15.950(2)Å, α= 91.51(1), β= 105.97(1), γ= 106.11(1)°, and Z= 2. The final residuals were R= 0.0713, R′= 0.0752 with 7283 reflections having I[gt-or-equal] 2.5σ(I). The crystal structures of 1a,1b, and the PPh3 adduct (2b,2b′) consist of a ruthenium(II) centre bonded to a η-p-cymene, a bidentate chelating Schiff base, and a unidentate ligand (Cl or PPh3). The chirooptical properties of the complexes have been studied using 1H NMR and CD spectral data. The presence of a low-energy barrier for the intermediate involved in these reactions, showing both retention as well as inversion of the metal configuration, is discussed.
Resumo:
Schiff base vanadium(IV) complexes of phenyl esters of the two acidic amino acids, i.e., aspartic and glutamic acid, were synthesized. The phenyl esters of these amino acids were synthesized by conventional method whereas the Schiff base vanadium(IV) complexes were synthesized using microwave irradiation. The complexes were characterized by spectroscopic tools such as IR, 1H NMR, mass (ES), ESR, and UV visible spectroscopy. All the complexes were studied for antibacterial and antifungal activity and found to be moderately active.
Resumo:
A novel (main-chain)-(side-chain) vinyl polyperoxide, poly(dipentene peroxide)(PDP), an alternating copolymer of dipentene (DP) and oxygen, has been synthesized by thermal oxidative polymerization of DP. The PDP was characterized by 1H NMR, 13C NMR, FTIR, DSC, TGA, and EI-MS studies. The overall activation energies of the degradation from Kissinger’s method were 28 and 33 kcal/mol, respectively, for the endocyclic and acyclic peroxide units. The side-chain peroxy groups were found to be thermally more stable than the main chain. Above 45°C the rate of polymerization increases sharply at a particular instant showing an “autoacceleration” with the formation of knee point. The kinetics of autoacceleration has been studied at various temperatures (45–70°C) and pressures (50–250 psi). © 2000 John Wiley&Sons, Inc. J Appl Polym Sci 79: 1549–1555, 2001
Resumo:
It is well known that enantiomers cannot be distinguished by NMR spectroscopy unless diastereomorphic interactions are imposed. Several chiral aligning media have therefore been reported for their visualization, although extensive studies are carried out using the liquid crystal made of polypeptide poly-γ-benzyl-L-glutamate (PBLG) in organic solvent. In PBLG medium the spin systems are weakly coupled and the first order analyses of the spectra are generally possible. But due to large number of pair wise interactions of nuclear spins resulting in many degenerate transitions the 1H NMR spectra are not only complex but also broad and featureless, in addition to an indistinguishable overlap of the spectra of enantiomers. This enormous loss of resolution severely hinders the analyses of proton spectra, even for spin systems with 5–6 interacting protons, thereby restricting itsroutine application. In this review we discuss our recently developed several one and multidimensional NMR experiments to circumvent these difficulties taking specific examples of the molecules containing a single chiral centre.
Resumo:
A series of novel 2-(4-(2,4-dimethoxybenzoyl)phenoxy)-1-(4-(3-(piperidin-4-yl)propyl) piperidin-1-yl)ethanone derivatives 9(ae) and 10(ag) were synthesized and characterized by 1H NMR, IR, mass spectral, and elemental analysis. These novel compounds were evaluated for their antileukemic activity against two human leukemic cell lines (K562 and CEM) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. Some of the tested compounds showed good antiproliferative activity with IC50 values ranging from 1.6 to 8.0 mu m. Compound 9c, 9e, and 10f with an electron-withdrawing halogen substituent at the para position on the phenyl ring showed excellent in vitro potency against tested human leukemia cells (K562 and CEM).
Resumo:
Three new nanoscopic trigonal prisms, (tmen)6Pd6(H2L)3](NO3)12 (1), (Meen)6Pd6(H2L)3](NO3)12 (2), and (2,2'-bipy)6Pd6(H2L)3](NO3)12 (3), have been synthesized in excellent yields through single-step metalligand-coordination-driven self-assembly using 5,10,15,20-tetrakis(3-pyridyl)porphyrin (H2L) as a donor and cis-blocked PdII 90 degrees acceptors. These complexes were fully characterized by spectroscopic studies and single-crystal X-ray diffraction. All of these barrels quantitatively bind ZnII ions in the N4 pockets of the porphyrin walls at room temperature. Their corresponding zinc-embedded complexes, (tmen)6Pd6(ZnL)3](NO3)12 (1?a), (Meen)6Pd6(ZnL)3](NO3)12 (2?a), and (2,2'-bipy)6Pd6(ZnL)3](NO3)12 (3?a), were synthesized under ambient conditions by the post-synthetic binding of ZnII ions into the H2N4 pockets of the porphyrin walls of these complexes. These zinc-embedded complexes were characterized by electronic absorption, fluorescence emission, 1H NMR spectroscopy, as well as elemental analysis. Complexes 13 exhibited considerable microporosity in their solid state. Complex 1 was an efficient adsorbent for nitrogen gas and EtOH, MeOH, and water vapors.
Resumo:
Tert-butyl 2,2-bis(2,4-dinitrophenyl)ethanoate was prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, tert-butyl 3-oxobutanoate and triethylamine. Acetyl group in tert-butyl 3-oxobutanoate has cleaved off during the formation of the title molecule. UV-VIS, IR, 1H NMR, 13C NMR, Proton-Proton COSY data and single crystal XRD results support the proposed structure. Flammability test, impact sensitivity test and TG/DTA studies at different heating rates on the synthesized molecule imply that it is an insensitive high energy density material.