76 resultados para website blocking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle-controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monodisperse iron oxide nanocrystals with spherical and cubic morphologies, of comparable dimensions, have been prepared by the thermal decomposition of FeOOH. The lattice spacings of both forms agree with that of magnetite, Fe(3)O(4). The two, however, exhibit very different blocking temperatures. Nanocrystals of cubic morphology are superparamagnetic above 190 K while the spherical nanocrystals at a lower temperature, 142 K. The higher blocking temperatures in particles of cubic morphology are shown to be a consequence of exchange bias fields. We show that in the present iron oxide nanocrystals the exchange bias fields originate from the presence of trace amounts of wustite, FeO. A Reitveld refinement analysis of the X-ray diffraction patterns shows that nanocrystals of cubic morphology have a higher FeO content. The higher FeO content is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature for nanocrystals with cubic morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the Nozieres-Schmitt-Rink method to study the repulsive Fermi gas in the absence of molecule formation, i.e., in the so-called ``upper branch.'' We find that the system remains stable except close to resonance at sufficiently low temperatures. With increasing scattering length, the energy density of the system attains a maximum at a positive scattering length before resonance. This is shown to arise from Pauli blocking which causes the bound states of fermion pairs of different momenta to disappear at different scattering lengths. At the point of maximum energy, the compressibility of the system is substantially reduced, leading to a sizable uniform density core in a trapped gas. The change in spin susceptibility with increasing scattering length is moderate and does not indicate any magnetic instability. These features should also manifest in Fermi gases with unequal masses and/or spin populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new technique is presented using principles of multisignal relaying for the synthesis of a universal-type quadrilateral polar characteristic. The modus operandi consists in the determination of the phase sequence of a set of voltage phasors and the provision of a trip signal for one sequence while blocking for the other. Two versions, one using ferrite-core logic and another using transistor logic, are described in detail. The former version has the merit of simplicity and has the added advantage of not requiring any d.c. supply. The unit is flexible, as it permits independent control of the characteristic along the resistance and reactance axis through suitable adjustments of replica impedance angles. The maximum operating time is about 20ms for all switching angles, and with faults within 95% of the protected section. The maximum transient overreach is about 8%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Present work presents a code written in the very simple programming language MATLAB, for three dimensional linear elastostatics, using constant boundary elements. The code, in full or in part, is not a translation or a copy of any of the existing codes. Present paper explains how the code is written, and lists all the formulae used. Code is verified by using the code to solve a simple problem which has the well known approximate analytical solution. Of course, present work does not make any contribution to research on boundary elements, in terms of theory. But the work is justified by the fact that, to the best of author’s knowledge, as of now, one cannot find an open access MATLAB code for three dimensional linear elastostatics using constant boundary elements. Author hopes this paper to be of help to beginners who wish to understand how a simple but complete boundary element code works, so that they can build upon and modify the present open access code to solve complex engineering problems quickly and easily. The code is available online for open access (as supplementary file for the present paper), and may be downloaded from the website for the present journal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With ever increasing network speed, scalable and reliable detection of network port scans has become a major challenge. In this paper, we present a scalable and flexible architecture and a novel algorithm, to detect and block port scans in real time. The proposed architecture detects fast scanners as well as stealth scanners having large inter-probe periods. FPGA implementation of the proposed system gives an average throughput of 2 Gbps with a system clock frequency of 100 MHz on Xilinx Virtex-II Pro FPGA. Experimental results on real network trace show the effectiveness of the proposed system in detecting and blocking network scans with very low false positives and false negatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological nanopores provide optimum dimensions and an optimal environment to study early aggregation kinetics of charged polyaromatic molecules in the nano-confined regime. It is expected that probing early stages of nucleation will enable us to design a strategy for supramolecular assembly and biocrystallization processes. Specifically, we have studied translocation dynamics of coronene and perylene based salts, through the alpha-hemolysin (alpha-HL) protein nanopore. The characteristic blocking events in the time-series signal are a function of concentration and bias voltage. We argue that different blocking events arise due to different aggregation processes as captured by all atomistic molecular dynamics (MD) simulations. These confinement induced aggregations of polyaromatic chromophores during the different stages of translocation are correlated with the spatial symmetry and charge distribution of the molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of simple functionalization methods to attach biomolecules such as proteins and DNA on inexpensive substrates is important for widespread use of low cost, disposable biosensors. Here, we describe a method based on polyelectrolyte multilayers to attach single stranded DNA molecules to conventional glass slides as well as a completely non-standard substrate, namely flexible plastic transparency sheets. We then use the functionalized transparency sheets to specifically detect single stranded Hepatitis B DNA sequences from samples. We also demonstrate a blocking method for reducing non-specific binding of target DNA sequences using negatively charged polyelectrolyte molecules. The polyelectrolyte based functionalization method, which relies on surface charge as opposed to covalent surface linkages, could be an attractive platform to develop assays on inexpensive substrates for low cost biosensing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Cooperative Opportunistic Automatic Repeat ReQuest (CoARQ) scheme to solve the HOL-blocking problem in infrastructure IEEE 802.11 WLANs. HOL blocking occurs when the head-of-the-line packet at the Access Point (AP) queue blocks the transmission of packets to other destinations resulting in severe throughput degradation. When the AP transmits a packet to a mobile station (STA), some of the nodes in the vicinity can overhear this packet transmission successfully. If the original transmission by the AP is unsuccessful, our CoARQ scheme chooses the station. STA or AP) with the best channel to the intended receiver as a relay and the chosen relay forwards the AP's packet to the receiver. This way, our scheme removes the bottleneck at the AP, thereby providing significant improvements in the throughput of the AP. We analyse the performance of our scheme in an infrastructure WLAN under a TCP controlled file download scenario and our analytical results are further validated by extensive simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic properties of carbon nanotube encapsulated nickel nanowires (C. E. nanowires of diameter similar to 10 nm), and its comparison to other forms of Ni are carried out in this work. The saturation magnetization (M-s) and coercivity (H-c) for C. E. nanowires are 1.0 emu/g and 230 Oe. The temperature dependence of coercivity follows T-0.77 dependence indicating a superparamagnetic behavior. The field-cooled and zero-field-cooled plots indicate that the blocking temperature (T-B) similar to 300 K. These altered magnetic properties of C. E. nanowires are mainly due to the nanoscale confinement effect from carbon nanotube encapsulation. The shape and magnetic environment enhance the total magnetic anisotropy of C. E. nanowires by a factor of four.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.