143 resultados para thermal-effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetics of the thermal decomposition of barium titanyl oxalate have been studied. Decomposition of the anhydrous oxalate is complex and deceleratory throughout. Kinetics of decomposition of the intermediate carbonate Ba2Ti2O5CO3 is greatly influenced by the thermal effects during its formation. The sigmoidal (α, t) curves obey a power law equation followed by first order decay. Presence of carbon in the vacuum prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product, barium titanate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some aspects of the pyrolysis of polystyrene peroxide (PSP) have been examined. Low-temperature decomposition studies at 60°C and 70°C have been carried out to elucidate the ageing behaviour of PSP. The exothermic decomposition was found to be complete in 44 h at 70°C suggesting that all peroxide bonds have broken. Enthalpy measurements of the aged samples were carried out as a function of storage time. Ageing was also followed by infrared spectroscopy, and the intensity of the peroxide absorption around 1050 cm−1 was found to decrease with ageing time. Benzaldehyde formed as a result of PSP pyrolysis is readily converted into benzoic acid, which crystallizes during the ageing process. Pyrolysis—gas chromatographic studies have shown that up to 450°C the basic decomposition mechanism (i.e., the formation of benzaldehyde and formaldehyde as the major products) does not change. No effect of pressure on the decomposition exotherm in differential thermal analysis was observed, suggesting that peroxide composition involves only condensed phase reactions. Hydroquinone, p-aminophenol and cadmium sulphide were found to retard the thermal decomposition of PSP, suggesting that these compounds would be potential antioxidants for polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ageing behaviour, leading to ballistic changes, has been studied as a function of oxidizer loading in polystyrene/ammonium perchlorate solid-propellants. The ageing studies were carried out at 100 °C in air. Change in burning rate decreased as the oxidizer loading increased from 75 to 80%. The change in thermal decomposition rates both at 230 and 260 °C also decreased as the oxidizer loading in the propellants increased. The shapes of the plots of the changes in burning rate and thermal decomposition rate (230 and 260 °C) at different storage times for different oxidizer-loaded propellants seem to be exactly similar. These results lead to the conclusion that the thermal decomposition of the propellant may be responsible for bringing about the ballistic changes during the ageing process. Infrared studies of the binder portion of the aged propellant indicate that peroxide formation takes place during the course of ageing and that peroxide formation for a particular storage time and temperature increases as the loading decreases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ageing behaviour of polystyrene (PS)/ammonium perchlorate (AP) propellent leading to ballistic changes has been studied. It follows a zero-order kinetic law. Ageing behaviour leading to change in burning rate ( ) in the temperature range of 60–200 ° C was found to remain the same. The dependence of the change of the average thermal decomposition (TD) rate at 230 and 260°C on the change in burning rate for the propellant aged at 100 ° C in air suggests that the slow TD of the propellant is the cause of ageing. The safe-life (for a pre-assigned burning-rate change limit) at 25 ° C in air has been calculated as a function of the rate of change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of pretreatments on the sublimation of pure ammonium perchlorate (AP) were studied by differential thermal analysis. The addition of inorganic salts (doping), or preheating, lead to desensitisation of the sublimation process, whereas it was sensitised by precompression. Sublimation increased with decrease in the particle size of the AP from 500 to 200 microns, but decreased with a further decrease in size from 200 to 100 microns. The results are interpreted in terms of gross imperfections and strain in the AP crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk Ge15Te85-xInx (1 <= x <= 11) series of glasses have been found to exhibit a threshold switching behaviour for an input current of 2 mA. An initial decrease is seen in the switching voltages (V-T) with the addition of indium, which is due to the higher metallicity of indium. An increase is seen in V-T above 3 at.% of indium, which proceeds until 8 at.%, with a change in slope (lower to higher) seen around 7 at.%. Beyond x = 8, a reversal in trend is exhibited in the variation of V-T, with a well-defined minimum around x = 9 at.%. Based on the composition dependence of V-T, it is proposed that Ge15Te85-xInx glasses exhibit an extended rigidity percolation threshold. The composition, x = 3, at which the V-T starts to increase and the composition, x = 7, at which a slope change is exhibited correspond to the onset and completion, respectively, of the extended stiffness transition. Thermal studies and photoconductivity e85-xInx glasses. In addition, the minimum seen in V-T at x = 9 is associated with the chemical threshold (CT) of this glassy system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of Cd1−xMnxS (0<=x<=0.5) were deposited on glass substrates by thermal evaporation. All the films were deposited at 300 K and annealed at 373, 473, and 573 K for 1 h in a high vacuum in the range 10−4 Pa. The as-deposited and the annealed films were characterized for composition, structure, and microstructure by using energy-dispersive X-ray, X-ray diffraction, scanning electron microscopy, and atomic force microscopy (AFM). The electrical properties were studied by Hall effect measurement. Electrical conductivity was studied in the temperature range 190–450 K. AFM studies showed that all the films were in nanocrystalline form with grain size varying in the range between 36 and 82 nm. Grain size studies showed a definite increase with annealing temperature. All the films exhibited wurtzite structure of the host material. The lattice parameter varied linearly with composition, following Vegard's law in the entire composition range. Grain size, electrical conductivity, Hall mobility, carrier concentration, and activation energy varied, exhibiting either maxima or minima at x=0.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insulation in a dc cable is subjected to both thermal and electric stress at the same time. While the electric stress is generic to the cable, the temperature rise in the insulation is, by and large, due to the Ohmic losses in the conductor. The consequence of this synergic effect is to reduce the maximum operating voltage and causes a premature failure of the cable. The authors examine this subject in some detail and propose a comprehensive theoretical formulation relating the maximum thermal voltage (MTV) to the physical and geometrical parameters of the insulation. The heat flow patterns and boundary conditions considered by the authors here and those found in earlier literature are provided. The MTV of a dc cable is shown to be a function of the load current apart from the resistance of the insulation. The results obtained using the expressions, developed by the authors, are compared with relevant results published in the literature and found to be in close conformity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.