104 resultados para surface structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characteristics of pre-monsoon and monsoon boundary layer structure and turbulence were studied in New Delhi and Bangalore, India during the summer of 1987. Micrometeorological towers were installed and instrumented at these locations to provide mean and turbulent surface layer measurements, while information on the vertical structure of the atmosphere was obtained using miniradiosondes. Thermal structures of the pre-monsoon and monsoon boundary layers were quite distinct. The daytime, pre-monsoon boundary layer observed over New Delhi was much deeper than that of the monsoon boundary layer observed over Bangalore and at times was characterized by multiple inversions. Surface, turbulent sensible heat fluxes at both sites were approximately the same (235 and 200 Wm−2 for New Delhi and Bangalore, respectively). Diurnal variations in the monsoon boundary layer at Bangalore were more regular compared to those under pre-monsoon conditions at New Delhi. One-dimensional numerical simulations of the pre-monsoon boundary layer using a turbulent energy closure scheme show good agreement with observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of two different forms of the calcium perchlorate complex of cyclo(Ala-Leu-Pro-Gly)2 have been determined and refined using X-ray crystallographic techniques. Orthorhombic form: C32H52N8O8.Ca(ClO4)2.7H2O.2CH3OH, space group C222(1), a = 14.366, b = 18.653, c = 19.824 A, Z = 4, R = 0.068 for 2208 observed reflections. Monoclinic form: C32H52N8O8.Ca(ClO4)2.4H2O, space group C2, a = 21.096, b = 10.182, c = 11.256 A, beta = 103.33 degrees, Z = 2, R = 0.075 for 2165 observed reflections. The cyclic peptide molecule in both the structures has the form of a twofold symmetric, slightly elongated bowl. Type II' beta-turns, involving Gly and Ala at the corners, exist at the two ends of the molecule. The interior of the molecule is substantially hydrophilic, and the external surface of the bowl is largely hydrophobic. The calcium ion is located at the centre of the mouth of the bowl-like molecule. In both crystal forms, four peptide carbonyl oxygens from the cyclic peptide and two solvent oxygens coordinate to the metal ion. The mode of complexation may be described as incomplete encapsulation as, for example, in the case of metal complexes of antamanide. In the crystal structures the complex ions are held together by hydrogen bonds involving perchlorate ions and water molecules. The molecular structure observed in the crystals is entirely consistent with the results of solution studies, which also indicate the conformation of the cyclic peptide in the complex to be similar to that of the uncomplexed molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the pi orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is a plant virus that infects Sesbania grandiflora plants in Andhra Pradesh, India. The amino acid sequence of the coat protein of SMV was determined using purified peptides generated by cleavage with trypsin, chymotrypsin, V8 protease and clostripain. The 230 residues so far determined were compared to the corresponding residues of southern bean mosaic virus (SBMV), the type member of sobemoviruses. The overall identity between the sequences is 61.7%. The amino terminal 64 residues, which constitute an independent domain (R-domain) known to interact with RNA, are conserved to a lower extent (52.5%). Comparison of the positively charged residues in this domain suggests that the RNA-protein interactions are considerably weaker in SMV. The residues that constitute the major domain of the coat protein, the surface domain (S-domain, residues 65-260), are better conserved (66.5%). The positively charged residues of this domain that face the nucleic acid are well conserved. The longest conserved stretch of residues (131-142) corresponds to the loop involved in intersubunit interactions between subunits related by the quasi 3-fold symmetry. A unique cation binding site located on the quasi 3-fold axis contributes to the stability of SMV. These differences are reflected in the increased stability of the SMV coat protein and its ability to be reconstituted with RNA at pH 7.5. A major epitope was identified using monoclonal antibodies to SMV in the segment 201-223 which contains an exposed helix in the capsid structure. This region is highly conserved between SMV and SBMV (70%) suggesting that it could represent the site of an important function such as vector recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three dimensional structure of a 32 residue three disulfide scorpion toxin, BTK-2, from the Indian red scorpion Mesobuthus tamulus has been determined using isotope edited solution NMR methods. Samples for structural and electrophysiological studies were prepared using recombinant DNA methods. Electrophysiological studies show that the peptide is active against hK(v)1.1 channels. The structure of BTK-2 was determined using 373 distance restraints from NOE data, 66 dihedral angle restraints from NOE, chemical shift and scalar coupling data, 6 constraints based on disulfide linkages and 8 constraints based on hydrogen bonds. The root mean square deviation (r.m.s.d) about the averaged co-ordinates of the backbone (N, C-alpha, C') and all heavy atoms are 0.81 +/- 0.23 angstrom and 1.51 +/- 0.29 angstrom respectively. The backbone dihedral angles (phi and psi) for all residues occupy the favorable and allowed regions of the Ramachandran map. The three dimensional structure of BTK-2 is composed of three well defined secondary structural regions that constitute the alpha-beta-beta, structural motif. Comparisons between the structure of BTK-2 and other closely related scorpion toxins pointed towards distinct differences in surface properties that provide insights into the structure-function relationships among this important class of voltage-gated potassium channel inhibiting peptides. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming beta-sheet structure to random coil and beta-turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known from temperature-programmed desorption studies that the binding energy of thiophene over Mo/gamma-Al2O3 and Co-Mo/gamma-Al2O3, hydrodesulfurization catalysts, is lower in the presence of hydrogen. The adsorption of thiophene on clean and hydrogen-adsorbed MoS2 was modelled using extended Huckel tight binding band structure calculations. In the eta(1) adsorption configuration the calculations show a lower binding energy for adsorption on the hydrogen-preadsorbed surface similar to that observed experimentally. The lowering is due to an increased occupancy of the Mo density of states in the presence of hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electronic structure of Ca1-xSrxVO3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to a distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy scales, namely the low-energy scale of thermal excitations ( $\sim\!k_{\rm B}T$) and the high-energy scale related to Coulomb and other electronic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to obtain basic understanding of microstructure evolution in laser-surface-alloyed layers, aluminum was surface alloyed on a pure nickel substrate using a CO2 laser. By varying the laser scanning speed, the composition of the surface layers can be systematically varied. The Ni content in the layer increases with increase in scanning speed. Detailed cross-sectional transmission electron microscopic study reveals complexities in solidification behavior with increased nickel content. It is shown that ordered B2 phase forms over a wide range of composition with subsequent precipitation of Ni2Al, an ordered omega phase in the B2 matrix, during solid-state cooling. For nickel-rich alloys associated with higher laser scan speed, the fcc gamma phase is invariably the first phase to grow from the liquid with solute trapping. The phase reorders in the solid state to yield gamma' Ni3Al. The phase competes with beta AlNi, which forms massively from the liquid. The beta AlNi transforms martensitically to a 3R structure during cooling in solid state. The results can be rationalized in terms of a metastable phase diagram proposed earlier. However, the results are at variance with earlier studies of laser processing of nickel-rich alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free surface effects on stacking fault and twin formation in fcc metals (Al, Cu, and Ni) were examined by first-principles calculations based on density functional theory (DFT). It is found that the generalized planar fault (GPF) energies of Ni are much larger than bulk Ni with respect to Al and Cu. The discrepancy is attributed to the localized relaxation of Ni nanofilm to accommodate the large expansion of the inter-planar separation induced at the fault plane. The localized relaxation can be coupled to the electronic structure of Ni nanofilms. (C) 2011 Elsevier B.V. All rights reserved.