117 resultados para star polyhedra
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
We provide a comparative performance analysis of network architectures for beacon enabled Zigbee sensor clusters using the CSMA/CA MAC defined in the IEEE 802.15.4 standard, and organised as (i) a star topology, and (ii) a two-hop topology. We provide analytical models for obtaining performance measures such as mean network delay, and mean node lifetime. We find that the star topology is substantially superior both in delay performance and lifetime performance than the two-hop topology.
Resumo:
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3-20 keV energy range were fitted with a power law and a high energy cut-off along with a Gaussian line at similar to 6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at similar to 6.4keV in the restricted energy range of 0.3-10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.
Resumo:
We present observations of radio recombination lines (RRL) from the starburst galaxy Arp 220 at 8.1 GHz (H92 alpha) and 1.4 GHz (H167 alpha and H165 alpha) and at 84 GHz (H42 alpha), 96 GHz (H40 alpha) and 207 GHz (H31 alpha) using the Very Large Array and the IRAM 30 m telescope, respectively. RRLs were detected at all the frequencies except 1.4 GHz, where a sensitive upper limit was obtained. We also present continuum flux measurements at these frequencies as well as at 327 MHz made with the VLA. The continuum spectrum, which has a spectral index alpha similar to -0.6 (S-nu proportional to nu(alpha)) between 5 and 10 GHz, shows a break near 1.5 GHz, a prominent turnover below 500 MHz, and a flatter spectral index above 50 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3.2 x 10(7) M., requiring 3 x 10(5) O5 stars with a total Lyman continuum production rate N-Lyc similar to 1.3 x 10(55) photons s(-1). The ratio of the expected to observed Br alpha and Br gamma fluxes implies a dust extinction A(V) similar to 45 mag. The derived Lyman continuum photon production rate implies a continuous star formation rate (SFR) averaged over the lifetime of OB stars of similar to 240 M yr(-1). The Lyman continuum photon Production rate of similar to 3% associated with the high-density H II regions implies a similar SFR at recent epochs (t < 10(5) yr). An alternative model of high-density gas, which cannot be excluded on the basis of the available data, predicts 10 times higher SFR at recent epochs. If confirmed, this model implies that star formation in Arp 220 consists of multiple starbursts of very high SFR (few times 10(3) M. yr(-1)) and short duration (similar to 10(5) yr). The similarity of IR excess, L-IR/L-Ly alpha similar to 24, in Arp 220 to values observed in starburst galaxies shows that most of the high luminosity of Arp 220 is due to the ongoing starburst rather than to a hidden active galactic nucleus (AGN). A comparison of the IR excesses in Arp 220, the Galaxy, and M33 indicates that the starburst in Arp 220 has an initial mass function that is similar to that in normal galaxies and has a duration longer than 107 yr. If there was no infall of gas during this period, then the star formation efficiency (SFE) in Arp 220 is similar to 50%. The high SFR and SFE in Arp 220 is consistent with their known dependences on mass and density of gas in star-forming regions of normal galaxies.
Resumo:
Be/X-ray binary pulsars have wide eccentric orbits and hence the angle of periastron of the orbit is very well defined in these sources. The presence of an X-ray pulsar allows for accurate measurements of orbital elements. A Be star usually is a rapidly rotating star and hence will deviate from spherical geometry. The tidal interaction between the neutron star and the Be star will add to the distortion of the Be star and alter its mass distribution. Thus a measurable rate of apsidal motion is expected from these systems. In this paper, we present the first conclusive detection of apsidal motion of the binary 4U 0115+63. We also present new and accurate orbital parameters of the Be/X-ray binaries V0332+53 and 2S 1417-624.
Resumo:
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonal 141in space group with a = 3.839 (1) A, c = 16-3S2 (5) A, V = 241.4 (1) angstrom(3), Z = 4 and was refined to an R index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2](2+) units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10(-5) cm(-1) at 600 degrees C.
Resumo:
Three new phosphonoacetate hybrid frameworks based on the actinide elements uranium and thorium have been synthesized. The compounds [C4N2H14][(UO2)(2)(O3PCH2COO)(2)]center dot H2O, I,[C4N2H14][(UO2)(2)(C2O4)(O3PCH2COOH)(2)], II, and Th(H2O)(2)(O3PCH2COO)(C2O4)(0.5). H2O, III, are built up from the connectivity between the metal polyhedra and the phosphonoacetate/oxalate units. Compound II has been prepared using a solvent-free approach, by a solid state reaction at 150 degrees C. It has been shown that II can also be prepared through a room temperature mechanochemical (grinding) route. The layer arrangement in III closely resembles to that observed in I. The compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and fluorescence studies.
Resumo:
We investigated the rare-earth transition-metal oxide series, Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb), crystallizing in the hexagonal structure with noncentrosymmetric P6(3)cm space group for possible occurrences of multiferroic properties. Our results show that while these compounds, except Ln = Y, exhibit a low-temperature antiferromagnetic transition due to the ordering of the rare-earth moments, the expected ferroelectric transition is frustrated by the large size difference between Cu and Ti at the B site. Interestingly, this leads these compounds to attain a rare and unique combination of desirable paraelectric properties with high dielectric constants, low losses, and weak temperature and frequency dependencies. First-principles calculations establish these exceptional properties result from a combination of two effects. A significant difference in the MO5 polyhedral sizes for M = Cu and M = Ti suppress the expected cooperative tilt pattern of these polyhedra, required for the ferroelectric transition, leading to relatively large values of the dielectric constant for every compound investigated in this series. Additionally, it is shown that the majority contribution to the dielectric constant arises from intermediate-frequency polar vibrational modes, making it relatively stable against any temperature variation. Changes in the temperature stability of the dielectric constant among different members of this series are shown to arise from changes in relative contributions from soft polar modes.
Resumo:
Reaction of [(eta-6-p-cymene)RuCl(L star)] with AgClO4 in Me2CO gives a perchlorate complex which on subsequent treatment with PPh3, gamma-picoline or Cl- yields adducts showing that there can be retention as well as inversion of configuration at the metal centre. The (R)Ru,(S)C absolute configurations of the chiral centres in the triphenylphosphine adduct have been established by an X-ray diffraction study [HL star, (S)-alpha-methylbenzylsalicylaldimine]. The CD spectral study reveals that there is an inversion of configuration during formation of the PPh3 adduct.
Resumo:
We consider the hydrodynamic evolution of gas in the interstellar medium of the host galaxy of a quasar due to Compton heating by the QSO radiation. We show that a Lagrangean formulation of the problem is necessary. It is found that the "hydrodynamic time scale" becomes important compared to the Compton heating time scale. We also relax the "single fluid" approximation by considering the existence of clouds and taking into account the mass loss from stars. The results predict star burst activity, and thus we explain the blue colors of the active galaxies.
Resumo:
Calibration of the CCD camera of the 1-m telescope at the Vainu Bappu Observatory, Kavalur, to the BVR system is reported here based on the observations of stars in the 'dipper asterism' in the open cluster M 67 (NGC 2682). Transformations involving B and V have negligible colour terms, while those involving R are slightly colour dependent. The possibility of using scale-down R band fluxes to estimate the continuum flux at H-alpha is investigated by comparing the counts in R band with those through an interference filter centred at H-alpha. The scaling factor is found to remain constant over a wide range of colours. The sensitivity of the telescope-filter-CCD combination is estimated to be 2.0 per cent, 8.3 per cent and 9.7 per cent in B, V and R bands, respectively. The star F117 appears to be a small-amplitude (approximately 0.05 mag) variable.
Resumo:
Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.