111 resultados para reducible supports
Resumo:
Seismic structural design is essentially the estimation of structural response to a forced motion, which may be deterministic or stochastic, imposed on the ground. The assumption that the same ground motion acts at every point of the base of the structure (or at every support) is not always justifiable; particularly in case of very large structures when considerable spatial variability in ground motion can exist over significant distances example long span bridges. This variability is partly due to the delay in arrival of the excitation at different supports (which is called the wave passage effect) and due to heterogeneity in the ground medium which results in incoherency and local effects. The current study examines the influence of the wave passage effect (in terms of delay in arrival of horizontal ground excitation at different supports and neglecting transmission through the structure) on the response of a few open-plane frame building structures with soil-structure interaction. The ground acceleration has been modeled by a suitably filtered white noise. As a special case, the ground excitation at different supports has also been treated as statistically independent to model the extreme case of incoherence due to local effects and due to modifications to the ground motion resulting from wave reflections and refractions in heterogeneous soil media. The results indicate that, even for relatively short spanned building frames, wave passage effect can be significant. In the absence of soil-structure interaction, it can significantly increase the root mean square (rms) value of the shear in extreme end columns for the stiffer frames but has negligible effect on the flexible frames when total displacements are considered. It is seen that pseudo-static displacements increasingly contribute to the rms value of column shear as the time delay increases both for the stiffer and for the more flexible frames. When soil-structure interaction is considered, wave passage effect (in terms of total displacements) is significant only for low soil shear modulus, G. values (where soil-structure interaction significantly lowers the fundamental frequency) and for stiff frames. The contribution of pseudo-static displacement to these rms values is found to decrease with increase in G. In general, wave passage effect for most interactive frames is insignificant compared to the attenuating effect a decrease in G, has on the response of the interactive structure to uniform support excitation. When the excitations at different supports are statistically independent, it is seen that for both the stiff and flexible frames, the rms value of the column shear in extreme end columns is several times larger (more for the stiffer frames) than the value corresponding to uniform base excitation with the pseudo-static displacements contributing over 99% of the rms value of column shear. Soil-structure interaction has an attenuating effect on the rms value of the column shear, the effect decreasing with increase in G,. Here too, the pseudo-static displacements contribute very largely to the column shear. The influence of the wave passage effect on the response of three 2-bay frames with and without soil-structure interaction to a recorded horizontal accelerogram is also examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Erasure coding techniques are used to increase the reliability of distributed storage systems while minimizing storage overhead. Also of interest is minimization of the bandwidth required to repair the system following a node failure. In a recent paper, Wu et al. characterize the tradeoff between the repair bandwidth and the amount of data stored per node. They also prove the existence of regenerating codes that achieve this tradeoff. In this paper, we introduce Exact Regenerating Codes, which are regenerating codes possessing the additional property of being able to duplicate the data stored at a failed node. Such codes require low processing and communication overheads, making the system practical and easy to maintain. Explicit construction of exact regenerating codes is provided for the minimum bandwidth point on the storage-repair bandwidth tradeoff, relevant to distributed-mail-server applications. A sub-space based approach is provided and shown to yield necessary and sufficient conditions on a linear code to possess the exact regeneration property as well as prove the uniqueness of our construction. Also included in the paper, is an explicit construction of regenerating codes for the minimum storage point for parameters relevant to storage in peer-to-peer systems. This construction supports a variable number of nodes and can handle multiple, simultaneous node failures. All constructions given in the paper are of low complexity, requiring low field size in particular.
Resumo:
Design research informs and supports practice by developing knowledge to improve the chances of producing successful products.Training in design research has been poorly supported. Design research uses human and natural/technical sciences, embracing all facets of design; its methods and tools are adapted from both these traditions. However, design researchers are rarely trained in methods from both the traditions. Research in traditional sciences focuses primarily on understanding phenomena related to human, natural, or technical systems. Design research focuses on supporting improvement of such systems, using understanding as a necessary but not sufficient step, and it must embrace methods for both understanding reality and developing support for its improvement. A one-semester, postgraduate-level, credited course that has been offered since 2002, entitled Methodology for Design Research, is described that teaches a methodology for carrying out research into design. Its steps are to clarify research success; to understand relevant phenomena of design and how these influence success; to use this to envision design improvement and develop proposals for supporting improvement; to evaluate support for its influence on success; and, if unacceptable, to modify, support, or improve the understanding of success and its links to the phenomena of design. This paper highlights some major issues about the status of design research and describes how design research methodology addresses these. The teaching material, model of delivery, and evaluation of the course on methodology for design research are discussed.
Resumo:
In order to explore idiotypic, anti-idiotypic, and anti-anti-idiotypic responses to allergens, BALB/c mice were immunized with affinity- purified human idiotypic antibodies directed against a highly purified shrimp allergen. This resulted in the production of anti-idiotypic antibodies which were quantitated by using rabbit idiotypic antibodies raised against the same purified allergen. The mouse anti-idiotypic antibodies recognized shrimp-specific human idiotypic antibodies of the IgE isotype from 18 of 20 individuals, and IgG antibodies from 14 of 20 shrimp-sensitive patients. Immunization of BALB/c mice with affinity- purified, allergen-specific anti-idiotypic antibodies induced anti- allergen IgE and IgG responses in the absence of the allergen. This paper thus presents evidence that anti-idiotypic antibodies raised against allergen-specific idiotypic antibodies may substitute for the original allergen in the induction of allergen-specific idiotypic antibodies. The demonstration of shared idiotopes on IgG and IgE antibodies in the sera of shrimp-sensitive patients supports the use of allergen-specific anti-idiotypic antibodies as surrogate allergens.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The dynamic response of a single span cable due to a travelling seismic excitation is studied in this paper. The influence of propagation time between the supports is investigated in detail. The importance of considering both vertical and longitudinal equations of motion in the analysis is highlighted. The results indicate the considerable influence of the time-lagged support motions on the cable dynamic tension. A modal combination rule based on the response spectrum method is developed to arrive at the peak estimates of the cable response. Some significant aspects of cable behaviour, especially under horizontal support motion, are discussed.
Resumo:
The stability characteristics of a conservatively loaded structure are expected to improve if additional supports are provided to the structure. The same, however, may not be said of a non-conservatively loaded structure; several factors, such as the location and stiffness of supports, type of structure and loading, have a significant influence on the stability characteristics. The influence of an arbitrarily located elastic support on the stability characteristics of a Leipholz column is examined.
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
Equatorial Indian Ocean is warmer in the east, has a deeper thermocline and mixed layer, and supports a more convective atmosphere than in the west. During certain years, the eastern Indian Ocean becomes unusually cold, anomalous winds blow from east to west along the equator and southeastward off the coast of Sumatra, thermocline and mixed layer lift up and the atmospheric convection gets suppressed. At the same time, western Indian Ocean becomes warmer and enhances atmospheric convection. This coupled ocean-atmospheric phenomenon in which convection, winds, sea surface temperature (SST) and thermocline take part actively is known as the Indian Ocean Dipole (IOD). Propagation of baroclinic Kelvin and Rossby waves excited by anomalous winds, play an important role in the development of SST anomalies associated with the IOD. Since mean thermocline in the Indian Ocean is deep compared to the Pacific, it was believed for a long time that the Indian Ocean is passive and merely responds to the atmospheric forcing. Discovery of the IOD and studies that followed demonstrate that the Indian Ocean can sustain its own intrinsic coupled ocean-atmosphere processes. About 50% percent of the IOD events in the past 100 years have co-occurred with El Nino Southern Oscillation (ENSO) and the other half independently. Coupled models have been able to reproduce IOD events and process experiments by such models – switching ENSO on and off – support the hypothesis based on observations that IOD events develop either in the presence or absence of ENSO. There is a general consensus among different coupled models as well as analysis of data that IOD events co-occurring during the ENSO are forced by a zonal shift in the descending branch of Walker cell over to the eastern Indian Ocean. Processes that initiate the IOD in the absence of ENSO are not clear, although several studies suggest that anomalies of Hadley circulation are the most probable forcing function. Impact of the IOD is felt in the vicinity of Indian Ocean as well as in remote regions. During IOD events, biological productivity of the eastern Indian Ocean increases and this in turn leads to death of corals over a large area.Moreover, the IOD affects rainfall over the maritime continent, Indian subcontinent, Australia and eastern Africa. The maritime continent and Australia suffer from deficit rainfall whereas India and east Africa receive excess. Despite the successful hindcast of the 2006 IOD by a coupled model, forecasting IOD events and their implications to rainfall variability remains a major challenge as understanding reasons behind an increase in frequency of IOD events in recent decades.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
Columns which have stochastically distributed Young's modulus and mass density and are subjected to deterministic periodic axial loadings are considered. The general case of a column supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports which are also random is considered. Material property fluctuations are modeled as independent one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation functions or their equivalent power spectral density functions, the input random fields are characterized by scale of fluctuations or variance functions for their second order properties. The foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute independent random variables. The system equations of boundary frequencies are obtained using Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system with random as well as periodic coefficients. Statistical properties of boundary frequencies are derived in terms of input parameter statistics. A complete covariance structure is obtained. The equations developed are illustrated using a numerical example employing a practical correlation structure.
Resumo:
Nanocomposites of Al?In, Al?Pb, and Zn?Pb have been prepared and characterized using rapid quenching techniques and the nature of superconducting transitions in them has been studied by resistivity measurements. The precipitated second phases (In and Pb) have particle sizes (d) of a few tens of nanometers such that ?0?d?dmin, where ?0 is the superconducting zero temperature coherence length and dmin is the minimum particle size that supports superconductivity. The onset of superconductivity generally starts in samples with d??0 and progressively other grains with d??0 become superconducting. We suggest that the proximity effect of the matrix plays a significant role. In an Al?In system, even with 40?wt.% In, the zero resistivity state is obtained at T?1.33 times the Tc of Al. But in Al?Pb and Zn?Pb, the zero resistivity state is obtained at T?4 and 5 times the Tc of Al and Zn with only 10�15 wt?% Pb, respectively.
Resumo:
We report experimental observations of a new mechanism of charge transport in two-dimensional electron systems (2DESs) in the presence of strong Coulomb interaction and disorder. We show that at low enough temperature the conductivity tends to zero at a nonzero carrier density, which represents the point of essential singularity in a Berezinskii-Kosterlitz-Thouless-like transition. Our experiments with many 2DESs in GaAs/AlGaAs heterostructures suggest that the charge transport at low carrier densities is due to the melting of an underlying ordered ground state through proliferation of topological defects. Independent measurement of low-frequency conductivity noise supports this scenario.
Resumo:
Rotating shear flows, when angular momentum increases and angular velocity decreases as functions of radiation coordinate, are hydrodynamically stable under linear perturbation. The Keplerian flow is an example of such a system, which appears in an astrophysical context. Although decaying eigenmodes exhibit large transient energy growth of perturbation which could govern nonlinearity in the system, the feedback of inherent instability to generate turbulence seems questionable. We show that such systems exhibiting growing pseudo-eigenmodes easily reach an upper bound of growth rate in terms of the logarithmic norm of the involved non-normal operators, thus exhibiting feedback of inherent instability. This supports the existence of turbulence of hydrodynamic origin in the Keplerian accretion disc in astrophysics. Hence, this answers the question of the mismatch between the linear theory and experimental/observed data and helps in resolving the outstanding question of the origin of turbulence therein.