65 resultados para nucleotide repeat
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.
Resumo:
Total tRNAs isolated from chloroplasts and etioplasts of cucumber cotyledons were compared with respect to amino acid acceptance, isoacceptor distribution and extent of modification. Aminoacylation of the tRNAs with nine different amino acids studied indicated that the relative acceptor activities of chloroplast total tRNAs for four amino acids are significantly higher than etioplast total tRNAs. Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) of chloroplast total tRNAs separated at least 32 spots, while approximately 41 spots were resolved from etioplast total tRNAs. Comparison of the reversed-phase chromatography (RPC-5) profiles of chloroplast and etioplast leucyl-, lysyl-, phenylalanyl-, and valyl-tRNA species showed no qualitative differences in the elution profiles. However, leucyl-, lysyl- and valyl-tRNA species showed quantitative differences in the relative amounts of the isoaccepting species present in chloroplasts and etioplasts. The analysis of modified nucleotides of total tRNAs from the two plastid types indicated that total tRNA from etioplasts was undermodified with respect to ribothymidine, isopentenyladenosine/hydroxy-isopentenyladenosine, 1-methylguanosine and 2-o-methylguanosine. This indicates that illumination may cause de novo synthesis of chloroplast tRNA-modifying enzymes encoded for by nuclear genes leading to the formation of highly modified tRNAs in chloroplasts. Based on these results, we speculate that the observed decrease in levels of aminoacylation, variations in the relative amounts of certain isoacceptors, and differences in the electrophoretic mobilities of some extra tRNA spots in the etioplast total tRNAs as compared to chloroplast total tRNAs could be due to some partially undermodified etioplast tRNAs. Taken together, the data suggested that the light-induced transformation of etioplasts into chloroplasts is accompanied by increases in the relative levels of some functional chloroplast tRNAs by post transcriptional nucleotide modifications.
Resumo:
Linker histone H1 binds preferentially the scaffold associated region (SAR) DNA elements that contain characteristic oligo dA . dT tracts. In the present study, we have compared the condensation brought about by histone H1 of a SAR DNA fragment in the histone spacer region of Drosophila melanogaster with that of a random DNA (pBR322 EcoRI-SalI) fragment by circular dichroism spectroscopy. The condensation of the SAR DNA fragment by histone H1 is 3-4-fold higher than that of the random DNA fragment. A 16-mer peptide, ATPKKSTKKTPKKAKK, the sequence that is present in the C-terminus of histone H1d, which has recently been shown to possess DIVA and chromatin condensing properties, also condenses the SAR DNA fragment preferentially in a highly cooperative manner. We have proposed a model for the dynamics of chromatin structure involving histone H1-SAR DNA interaction through SPKK containing peptide motifs and its competition by AT-hook peptides present in the nonhistone chromosomal proteins like HMG-I and HMG-Y.
Resumo:
Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg 128 into the DNA double helix and its interaction with the O6MG: C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.
Resumo:
By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m(5)C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m(5)C in Xi (similar to3.6 x 10(7)) than in all the remaining chromosomes put together (similar to2.1 x 10(7)). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.
Resumo:
Lysine biosynthesis proceeds by the nucleotide-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) by dihydrodipicolinate reductase (DHDPR). The S. aureus DHDPR structure reveals different conformational states of this enzyme even in the absence of a substrate or nucleotide-cofactor. Despite lacking a conserved basic residue essential for NADPH interaction, S. aureus DHDPR differs from other homologues as NADPH is a more preferred co-factor than NADH. The structure provides a rationale-Lys35 compensates for the co-factor site mutation. These observations are significant for bi-ligand inhibitor design that relies on ligand-induced conformational changes as well as co-factor specificity for this important drug target. Structured summary of protein interactions: DHDPR binds to DHDPR by molecular sieving (View interaction). DHDPR binds to DHDPR by dynamic light scattering (View interaction). DHDPR binds to DHDPR by X-ray crystallography (View interaction). (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. The bacterium displays an excellent adaptability to survive within the host macrophages. As the reactive environment of macrophages is capable of inducing DNA damage, the ability of the pathogen to safeguard its DNA against the damage is of paramount significance for its survival within the host. Analysis of the genome sequence has provided important insights into the DNA repair machinery of the pathogen, and the studies on DNA repair in mycobacteria have gained momentum in the past few years. The studies have revealed considerable differences in the mycobacterial DNA repair machinery when compared with those of the other bacteria. This review article focuses especially on the aspects of base excision, and nucleotide excision repair pathways in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Troger's base skeleton with the G-quadruplex DNA (G4DNA). These Troger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.
Resumo:
Luteal insufficiency affects fertility and hence study of mechanisms that regulate corpus luteum (CL) function is of prime importance to overcome infertility problems. Exploration of human genome sequence has helped to study the frequency of single nucleotide polymorphisms (SNPs). Clinical benefits of screening SNPs in infertility are being recognized well in recent times. Examining SNPs in genes associated with maintenance and regression of CL may help to understand unexplained luteal insufficiency and related infertility. Publicly available microarray gene expression databases reveal the global gene expression patterns in primate CL during the different functional state. We intend to explore computationally the deleterious SNPs of human genes reported to be common targets of luteolysin and luteotropin in primate CL Different computational algorithms were used to dissect out the functional significance of SNPs in the luteinizing hormone sensitive genes. The results raise the possibility that screening for SNPs might be integrated to evaluate luteal insufficiency associated with human female infertility for future studies. (C) 2012 Elsevier B.V. All rights reserved,
Resumo:
The intestine is the primary site of nutrient absorption, fluid-ion secretion, and home to trillions of symbiotic microbiota. The high turnover of the intestinal epithelia also renders it susceptible to neoplastic growth. These diverse processes are carefully regulated by an intricate signaling network. Among the myriad molecules involved in intestinal epithelial cell homeostasis are the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP). These cyclic nucleotides are synthesized by nucleotidyl cyclases whose activities are regulated by extrinsic and intrinsic cues. Downstream effectors of cAMP and cGMP include protein kinases, cyclic nucleotide gated ion channels, and transcription factors, which modulate key processes such as ion-balance, immune response, and cell proliferation. The web of interaction involving the major signaling pathways of cAMP and cGMP in the intestinal epithelial cell, and possible cross-talk among the pathways, are highlighted in this review. Deregulation of these pathways occurs during infection by pathogens, intestinal inflammation, and cancer. Thus, an appreciation of the importance of cyclic nucleotide signaling in the intestine furthers our understanding of bowel disease, thereby aiding in the development of therapeutic approaches.
Resumo:
P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Genomic sequences are far from being random but are made up of systematically ordered and information rich patterns. These repeated sequence patterns have been vastly utilized for their fundamental importance in understanding the genome function and organization. To this end, a comprehensive toolkit, RepEx, has been developed which extracts repeat (inverted, everted and mirror) patterns from the given genome sequence(s) without any constraints. The toolkit can also be used to fetch the inverted repeats present in the protein sequence (s). Further, it is capable of extracting exact and degenerate repeats with a user defined spacer intervals. It is remarkably more precise and sensitive when compared to the existing tools. An example with comprehensive case studies and a performance evaluation of the proposed toolkit has been presented to authenticate its efficiency and accuracy. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.
Resumo:
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of alpha 5 beta gamma GABA(A) receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.