248 resultados para mixture of distribution hypothesis
Resumo:
The self-assembly reaction of a cis-blocked 90° square planar metal acceptor with a symmetrical linear flexible linker is expected to yield a [4 + 4] self-assembled square, a [3 + 3] assembled triangle, or a mixture of these.However, if the ligand is a nonsymmetrical ambidentate, it is expected to form a complex mixture comprising several linkage isomeric squares and triangles as a result of different connectivities of the ambidentate linker. We report instead that the reaction of a 90° acceptor cis-(dppf)Pd(OTf)2 [where dppf ) 1,1′-bis(diphenylphosphino)- ferrocene] with an equimolar amount of the ambidentate unsymmetrical ligand Na-isonicotinate unexpectedly yields a mixture of symmetrical triangles and squares in the solution. An analogous reaction using cis-(tmen)Pd(NO3)2 instead of cis-(dppf)Pd(OTf)2 also produced a mixture of symmetrical triangles and squares in the solution. In both cases the square was isolated as the sole product in the solid state, which was characterized by a single crystal structure analysis. The equilibrium between the triangle and the square in the solution is governed by the enthalpic and entropic contributions. The former parameter favors the formation of the square due to less strain in the structure whereas the latter one favors the formation of triangles due to the formation of more triangles from the same number of starting linkers. The effects of temperature and concentration on the equilibria have been studied by NMR techniques. This represents the first report on the study of square-triangle equilibria obtained using a nonsymmetric ambidentate linker. Detail NMR spectroscopy along with the ESI-mass spectrometry unambiguously identified the components in the mixture while the X-ray structure analysis determined the solid-state structure.
Resumo:
The coordination driven self-assembly of discrete molecular triangles from a non-symmetric ambidentate linker 5-pyrimidinecarboxylate (5-pmc) and Pd(II)/Pt(II) based 90◦ acceptors is presented. Despite the possibility of formation of a mixture of isomeric macrocycles (linkage isomers) due to different connectivity of the ambidentate linker, formation of a single and symmetrical linkage somer in both the cases is an interesting observation. Moreover, the reported macrocycles represent the first example of discrete metallamacrocycles of bridging 5-pmc. While solution composition in both the cases was characterised by multinuclear NMR study and electrospray ionization mass spectrometry (ESI-MS), the identity of the assemblies in the solid state was established by X-ray single crystals structure analysis. Variable temperature NMR study clearly ruled out the formation of any other macrocycles by [4 + 4] or [2 + 2] self-assembly of the reacting components.
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
The reaction of N4P4Cl8(1) with sodium phenoxide (or phenol in the presence of triethylamine) has been studied under a variety of experimental conditions. The chloro(phenoxy)-derivatives, N4P4Cl8-n(OPh)n[n= 1 or 2 (mixture of four non-geminal isomers), 3(mixture of non-geminal isomers), 4(mixture of isomers), 5(mixture of isomers), 6(mixture of four non-geminal isomers), or 8], have been isolated by column chromatography over silica gel. Attempts to separate geometric isomers were unsuccessful. Structural elucidation of the products is based on the 31P n.m.r. data for the chloro-precursors and 1H and 31P n.m.r. spectra of the dimethylamino- and/or methoxy-derivatives. The chlorine-replacement pattern is discussed.
Resumo:
Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.
Resumo:
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5–60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
Oxygen Consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solarium tuberosum L.) was induced following chilling treatment at 4 degrees C.About half of the total O-2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously Surmised. In potatoes Subjected to chill stress (4 degrees C) for periods of 3, 5 and >= 8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.
Resumo:
Studies on the dilute solution properties of methylmethacrylate-acrylonitrile random copolymers of three different compositions, 0.236, 0.5 and 0.74 mole fraction (m.f.) of acrylonitrile (AN) designated as MAa, MAb and MAc, respectively, have been made in good solvents and theta solvents. MAa has been studied in benzene (Bz) and ethylacetate (EAc). MAb in acetonitrile (MeCN), dimethyl sulphoxide (DMSO) and a binary solvent mixture of Bz and dimentyl formamide (DMF) in the volume ratio 6.5:1 designated as BM1 and MAc in MeCN, DMSO and Bz + DMF in the volume ratio 1.667:1 designated as BM2. The Mark-Houwink exponent ‘a’ reveals that Bz is a theta solvent for MAa at 20°C. For MAb and MAc, BM1 and BM2, respectively have ‘a’ values of 0.5 at all three temperatures studied (30°, 40° and 50°C). It is not clear whether they represent theta states or preferential adsorption plays a role complicating the behaviour in solution. The values of A2 are very low in MeCN considering that it is a very good solvent for the copolymer, ‘a’ values for MAb and MAc being 0.75 and 0.7, respectively.
Resumo:
The standard Gibbs energy change accompanying the conversion of rare earth oxides to oxysulfides by reaction of rare earth oxides with diatomic sulfur gas has been measured in the temperature range 870 to 1300 K using the solid state cell: Pt/Cu+Cu2S/R2O2S+R2O3‖(CaO)ZrO2‖Ni+NiO, Pt where R=La, Nd, Sm, Gd, Tb, and Dy. The partial pressure of diatomic sulfur over a mixture of rare earth oxide (R2O3) and oxysulfide (R2O2S) is fixed by the dissociation of Cu2S to Cu in a closed system. The buffer mixture of Cu+Cu2S is physically separated from the rare earth oxide and oxysulfide to avoid complications arising from interaction between them. The corresponding equilibrium oxygen partial pressure is measured with an oxide solid electrolyte cell. Gibbs energy change for the conversion of oxide to the corresponding oxysulfide increases monotonically with atomic number of the rare earth element. Second law enthalpy of formation also shows a similar trend. Based on this empirical trend Gibbs energies of formation of oxysulfides of Pr, Eu, Ho, and Er are estimated as a function of temperature.
Resumo:
A generalized mass transport model is developed for predicting the rate ofdeposition in chemical vapor deposition (CVD) systems. This combines thegeneralized method of obtaining equilibrium composition, with elemental fluxbalance expressions. This procedure avoids the usual problems encountered incalculating the rates in multicomponent systems, like writing overall reactionschemes. The dependence of multicomponent diffusivities on the fluxes is accountedin this model using an iterative procedure. The model developed isapplied to the deposition of titanium carbide on cemented carbide tool bitsfrom a gas mixture of titanium tetrachloride, toluene, and hydrogen. Experimentaldeposition rates were obtained using a thermogravimetric assembly.Mass transport controlled rates give an order of magnitude estimates of theobserved rates.
Resumo:
The formation of axially coordinated morpholine (morph) complexes of MTPP, (M = Co, Ni, Cu and Zn) has been studied. Morpholine coordinates through imino nitrogen to the metal ions with the retainment of equatorial conformation. The presence of spin-free, NiTPP (morph), (S = 1) and an equilibrium mixture of CoTPP and an oxygen adduct of CoTPP (morph) in solution have been observed.
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
The compounds Pb2PtO4 and PbPt2O4 were synthesized from an intimate mixture of yellow PbO and Pt metal powders by heating under pure oxygen gas at 973 K for periods up to 600 ks with intermediate grinding and recompacting. Both compounds were found to decompose on heating in pure oxygen to PbO and Pt, apparently in conflict with the requirements for equilibrium phase relations in the ternary system Pb–Pt–O. The oxygen chemical potential corresponding to the three-phase mixtures, Pb2PtO4 + PbO + Pt and PbPt2O4 + PbO + Pt were measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas at 0.1 MPa pressure as the reference electrode. The standard Gibbs free energies of formation of the ternary oxides were derived from the measurements. Analysis of the results indicated that the equilibrium involving three condensed phases Pb2PtO4 + PbO + Pt is metastable. Under equilibrium conditions, Pb2PtO4 should have decomposed to a mixture of PbO and PbPt2O4. Measurement of the oxygen potential corresponding to this equilibrium decomposition as a function of temperature indicated that decomposition temperature in pure oxygen is 1014(±2) K. This was further confirmed by direct determination of phase relations in the ternary Pb–Pt–O by equilibrating several compositions at 1023 K for periods up to 850 ks and phase identification of quenched samples using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Only one ternary oxide PbPt2O4 was stable at 1023 K under equilibrium conditions. Alloys and intermetallic compounds along the Pb–Pt binary were in equilibrium with PbO.
Resumo:
Standard Gibbs energies of formation of oxysulfides of cerium and yttrium from their respective oxedes were determined using solid oxide galvanic cells incorporating calcia-stabilized zirconia as the electrolyte in the temperature range 870–1120 K. The sulfur potential over the electrode containing the oxide and oxysulfide was fixed by a buffer mixture of Ag + Ag2S. A small amount of CaH2 was added to the buffer to generate an equilibrium ratio of H2S and H2 species in a closed system containing the buffer and the electrode. The sulfur potential is transmitted to the electrode via the gas phase. The results can be summarized by the equations 2left angle bracketCeO2right-pointing angle bracket+1/2(S2)→left angle bracketCe2O2Sright-pointing angle bracket+(O2) ΔG°=430600−109·7T(±400)J mol−1 left angle bracketY2O3right-pointing angle bracket+1/2(S2)→left angle bracketY2O2Sright-pointing angle bracket+1/2(O2) ΔG°=114780−1·45T(±200)J mol−1 The values are compared with data reported in the literature. The stability field diagram for the Ce---O---S system has been developed using the results of this study for Ce2O2S and data for other phases from the literature.