111 resultados para genetic gain
Resumo:
For a population made up of individuals capable of sexual as well as asexual modes of reproduction, conditions for the spread of a transposable element are explored using a one-locus, two-haplotype model. The analysis is then extended to include the possibility that the transposable element can modulate the probability of sexual reproduction, thus casting Hickey’s (1982,Genetics 101: 519–531) suggestion in a population genetics framework. The model explicitly includes the cost of sexual reproduction, fitness disadvantage to the transposable element, probability of transposition, and the predisposition for sexual reproduction in the presence and absence of the transposable element. The model predicts several kinds of outcome, including initial frequency dependence and stable polymorphism. More importantly, it is seen that for a wide range of parameter values, the transposable element can go to fixation. Therefore it is able to convert the population from a predominantly asexual to a predominantly sexual mode of reproduction. Viewed in conjunction with recent results implicating short stretches of apparently non-coding DNA in sex determination (McCoubreyet al. 1988,Science 242: 1146–1151), the model hints at the important role this mechanism could have played in the evolution of sexuality.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.
Resumo:
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis x Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
Resumo:
Analysis of gas-particle nozzle flow is carried out with attention to the effect of dust particles on the vibrational relaxation phenomena and consequent effects on the gain of a gasdynamic laser. The phase nonequilibrium between the gas mixture and the particles during the nozzle expansion process is taken into account simultaneously. The governing equations of the two-phase nozzle flow have been transformed into similar form, and general correlating parameters have been obtained. It is shown from the present analysis that the particles present in the mixture affect the optimum gain obtainable from a gasdynamic laser adversely, and the effect depends on the size and loading of the particles in the mixture.
Resumo:
The system gain of two CCD systems in regular use at the Vainu Bappu Observatory, Kavalur, is determined at a few gain settings. The procedure used for the determination of system gain and base-level noise is described in detail. The Photometrics CCD system at the 1-m reflector uses a Thomson-CSF TH 7882 CDA chip coated for increased ultraviolet sensitivity. The gain is programme-selected through the parameter 'cgain' varying between 0 and 4095 in steps of 1. The inverse system gain for this system varies almost linearly from 27.7 electrons DN-1 at cgain = 0 to 1.5 electrons DN-1 at cgain = 500. The readout noise is less than or similar 11 electrons at cgain = 66. The Astromed CCD system at 2.3-m Vainu Bappu Telescope uses a GEC P8603 chip which is also coated for enhanced ultraviolet sensitivity. The amplifier gain is selected in discrete steps using switches in the controller. The inverse system gain is 4.15 electrons DN-1 at the gain setting of 9.2, and the readout noise approximately 8 electrons.
Resumo:
Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex landscapes. We introduce the art and science of genetic algorithms and survey current issues in GA theory and practice. We do not present a detailed study, instead, we offer a quick guide into the labyrinth of GA research. First, we draw the analogy between genetic algorithms and the search processes in nature. Then we describe the genetic algorithm that Holland introduced in 1975 and the workings of GAs. After a survey of techniques proposed as improvements to Holland's GA and of some radically different approaches, we survey the advances in GA theory related to modeling, dynamics, and deception
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.
Resumo:
This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes.
Resumo:
Flower development provides a model system to study mechanisms that govern pattern formation in plants. Most flowers consist of four organ types that are present in a specific order from the periphery to the centre of the flower. Reviewed here are studies on flower development in two model species: Arabidopsis thaliana and Antirrhinum majus that focus on the molecular genetic analysis of homeotic mutations affecting pattern formation in the flower. Based on these studies a model was proposed that explains how three classes of regulatory genes can together control the development of the correct pattern of organs in the flower. The universality of the basic tenets of the model is apparent from the analysis of the homologues of the Arabidopsis genes from other plant species
Resumo:
Genetic Algorithms are efficient and robust search methods that are being employed in a plethora of applications with extremely large search spaces. The directed search mechanism employed in Genetic Algorithms performs a simultaneous and balanced, exploration of new regions in the search space and exploitation of already discovered regions.This paper introduces the notion of fitness moments for analyzing the working of Genetic Algorithms (GAs). We show that the fitness moments in any generation may be predicted from those of the initial population. Since a knowledge of the fitness moments allows us to estimate the fitness distribution of strings, this approach provides for a method of characterizing the dynamics of GAs. In particular the average fitness and fitness variance of the population in any generation may be predicted. We introduce the technique of fitness-based disruption of solutions for improving the performance of GAs. Using fitness moments, we demonstrate the advantages of using fitness-based disruption. We also present experimental results comparing the performance of a standard GA and GAs (CDGA and AGA) that incorporate the principle of fitness-based disruption. The experimental evidence clearly demonstrates the power of fitness based disruption.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
Competition between seeds within a fruit for parental resources is described using one-locus-two-allele models. While a �normal� allele leads to an equitable distribution of resources between seeds (a situation which also corresponds to the parental optimum), the �selfish� allele is assumed to cause the seed carrying it to usurp a higher proportion of the resources. The outcome of competition between �selfish� alleles is also assumed to lead to an asymmetric distribution of resources, the �winner� being chosen randomly. Conditions for the spread of an initially rare selfish allele and the optimal resource allocation corresponding to the evolutionarily stable strategy, derived for species with n-seeded fruits, are in accordance with expectations based on Hamilton�s inclusive fitness criteria. Competition between seeds is seen to be most intense when there are only two seeds, and decreases with increasing number of seeds, suggesting that two-seeded fruits would be rarer than one-seeded or many-seeded ones. Available data from a large number of plant species are consistent with this prediction of the model.
Resumo:
Genetic algorithms (GAs) are search methods that are being employed in a multitude of applications with extremely large search spaces. Recently, there has been considerable interest among GA researchers in understanding and formalizing the working of GAs. In an earlier paper, we have introduced the notion of binomially distributed populations as the central idea behind an exact ''populationary'' model of the large-population dynamics of the GA operators for objective functions called ''functions of unitation.'' In this paper, we extend this populationary model of GA dynamics to a more general class of objective functions called functions of unitation variables. We generalize the notion of a binomially distributed population to a generalized binomially distributed population (GBDP). We show that the effects of selection, crossover, and mutation can be exactly modelled after decomposing the population into GBDPs. Based on this generalized model, we have implemented a GA simulator for functions of two unitation variables-GASIM 2, and the distributions predicted by GASIM 2 match with those obtained from actual GA runs. The generalized populationary model of GA dynamics not only presents a novel and natural way of interpreting the workings of GAs with large populations, but it also provides for an efficient implementation of the model as a GA simulator. (C) Elsevier Science Inc. 1997.