153 resultados para double poling
Resumo:
The unsteady laminar free convection flow of an incompressible electrically conducting fluid over two-dimensional and axisymmetric bodies embedded in a highly porous medium with an applied magnetic field has been studied. The unsteadiness in the flow field is caused by the variation of the wall temperature and concentration with time. The coupled nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. It is observed that the skin friction, heat transfer and mass transfer increase with the permeability parameter but decrease with the magnetic parameter. The results are strongly dependent on the variation of wall temperature and concentration with time. The skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist or oppose the thermal buoyancy force. However, the mass transfer is found to be higher for small values of the ratio of the buoyancy parameters than for large values
Resumo:
The combined effects of the permeability of the medium, magnetic field, buoyancy forces and dissipation on the unsteady mixed convection flow over a horizontal cylinder and a sphere embedded in a porous medium have been studied. The nonlinear coupled partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The skin friction, heat transfer and mass transfer increase with the permeability of the medium, magnetic field and buoyancy parameter. The heat and mass transfer continuously decrease with the stream-wise distance, whereas the skin friction increases from zero, attains a maximum and then decreases to zero. The skin friction, heat transfer and mass transfer are significantly affected by the free stream velocity distribution. The effect of dissipation parameter is found to be more pronounced on the heat transfer than on the skin friction and mass transfer
Resumo:
Antibodies raised against denatured DNA complexed with methylated bovine serum albumin have been reported to react with ssDNA but not with dsDNA. Using a highly sensitive avidin-biotin microELISA, we report that such antibodies also bind to dsDNA. Antibodies which reacted with ssDNA and dsDNA were found to be IgG type. The antibodies did not react with tRNA and rRNA. The binding of antibodies to dsDNA was partially inhibited dy individual deoxyribonucleotides. ssDNA as well as dsDNA inhibited the binding of antibodies to dsDNA. The binding of these antibodies to supercoiled and relaxed forms of pBR322 DNA was demonstrated by gel retardation assay. The cross-reaction with ssDNA was observed even after affinity purification on native DNA-cellulose. The antibodies were also shown to bind to poly(dA-dT)·poly(dA-dT)
Resumo:
The delamination-restacking behavior of a number of layered double hydroxides (LDHs) differing in [M-II]/[M-III] ratio, constituent metal ions and intercalated surfactant anions in different organic solvents has been studied. Colloidal dispersion due to delamination and the stability of the colloid obtained have been found to be not affected much by the nature of the constituent metal ions but increase with increase in the size of the surfactant anion. LDHs with low [M-II]/[M-III] ratio delaminate better than the ones with high [M-II]/[M-III] ratio. Delamination is best in alcohols such as 1-butanol, 1-hexanol, 1-octanol and I-decanol, while a little delamination occurs in nonpolar solvents such as hexane. In all the cases, the original layered solid could be obtained through restacking of layers from the colloidal dispersion.
Resumo:
Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase
Double Diffusive Non-Darcy Free-Convection From Two-Dimensional And Axisymmetric-Bodies Of Arbitrary
Resumo:
The possible role of double valence fluctuation in both lead and oxide ions with reference to metallization in oxides of lead is examined by x-ray-photoemission spectroscopy, ultraviolet-photoemission spectroscopy (UPS), and 207Pb NMR studies. The double valence fluctuations may be viewed as Pb4++2O2-⇄Pb2+O22-. While the insulating oxides PbO, Pb3O4, and Sr2PbO4 show a single oxide ion, O2- characterized by O(1s) at 529.7 eV, the insulating peroxide BaO2 is characterized by the ion O22- with a single O(1s) at 533 eV. The metallic PbO2, BaPbO3, BaBiPbO3, and SrPbO3 showed the occurrence of both O2- and O22- ions. The valence band in these compounds has also been studied by UPS, and clear evidence for the coexistence of O2- and O22- is seen in PbO2. A simultaneous study of 207Pb NMR suggests that the Pb ion could also exist in mixed-valence states. Qualitative arguments are presented to rationalize the existence of such mixed valences of the anion in metal oxides in general and their role in superconductivity.
Resumo:
The non-darcy mixed convection flows from heated vertical and horizontal plates in saturated porous media have been considered using boundary layer approximations. The flows are considered to be driven by multiple buoyancy forces. The similarity solutions for both vertical and horizontal plates have been obtained. The governing equations have been solved numerically using a shooting method. The heat transfer, mass transfer and skin friction are reduced due to inertial forces. Also, they increase with the buoyancy parameter for aiding flow and decrease for the opposing flow. For aiding flow, the heat and mass transfer coefficients are found to approach asymptotically the forced or free convection values as the buoyancy parameter approaches zero or infinity.
Resumo:
The effects of the two sampling gate positions, and their widths and the integrator response times on the position, height, and shape of the peaks obtained in a double‐channel gated‐integrator‐based deep‐level transient spectroscopy (DLTS) system are evaluated. The best compromise between the sensitivity and the resolution of the DLTS system is shown to be obtained when the ratio of the two sampling gate positions is about 20. An integrator response time of about 100 ms is shown to be suitable for practical values of emission time constants and heating rates generally used.
Resumo:
Introduction Dicalcium strontium propionate (DCSP) undergoes a ferroelectric phase transition at about 28 1.5 K, with the spontaneous polarization occurring along the tetragonal C-axis.1 Takashige et al.2,3 have recently reported ferroelectricity in annealed samples of dicalcium lead propionate (DCLP) in the range 191 K to 331 K. The removal of the inner biasing field by annealing has been known in the case of DCLP3 and DCSP.4 Because of the possible dependence of the inner biasing field on the particle size, a study of the temperature dependence of the dielectric behaviour of the powdered samples of these compounds was undertaken.
Resumo:
We propose a compact model which predicts the channel charge density and the drain current which match quite closely with the numerical solution obtained from the Full-Band structure approach. We show that, with this compact model, the channel charge density can be predicted by taking the capacitance based on the physical oxide thickness, as opposed to C-eff, which needs to be taken when using the classical solution.
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
The curvature of the line of critical points in a reentrant ternary mixture is determined by approaching the double critical point (DCP) extremely closely. The results establish the continuous and quadratic nature of this line. Out study encompasses as small a loop size (ΔT) as 663 mK. The DCP is realized when ΔT becomes zero.
Resumo:
Transition metal ammonium double sulphates (NH4)2M(SO4)2· 6H2O, where M = Fe, Co and Ni react with hydrazine hydrate in air giving crystalline compounds of the general formula (N2H5) [M(N2H3COO)3] H2O. The reaction proceeds through (N2H5)2 M(SO4)2, · 3N2H4, (N2H5)2 [M(OH)4 · (N2H4)2], M(N2H3COO)2 · (N2H4)2 and N2H5 [M(N2 H3 COO)3] intermediates. The reaction sequence is followed by chemical analysis and infrared spectra. A possible reaction mechanism has been suggested.