273 resultados para co-operating target
Resumo:
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.
Resumo:
The characterization and properties of trans-(X)-[RuX2(CO)(2)(alpha/beta-NaiPy)] (1, 2) (alpha-NaiPy (a), beta-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-RuX2(CO)(MeCN)(alpha/beta-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (phi= 0.02-0.08) are higher than 3 and 4 (phi = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two pi-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.
Resumo:
The 270 MHz 1H n.m.r. spectrum of benzyloxycarbonyl-Pro-N-methylamide in CDCl3 is exchange broadened at 293° K. Spectral lines due to two species are frozen out at 253° K and a dynamically averaged spectrum is obtained at 323° K. A selective broadening of the Cβ and Cγ resonances in the 13C n.m.r. spectrum is observed at 253° K, with a splitting of the Cβ and Cγ resonances into a pair of lines of unequal intensity. A similar broadening of Cβ and Cγ peaks is also detected in pivaloyl-Pro-N-methylamide where cis-trans interconversion about the imide bond is precluded by the bulky t-butyl group. The rate process is thus attributed to rotation about the Cα-CO bond (ψ) and a barrier (ΔG#) of 14kcal mol-1 is estimated. 13C n.m.r. data for pivaloyl-Pro-N-methylamide in a number of solvents is presented and the differences in the Cβ and Cγ chemical shifts are interpreted in terms of rotational isomerism about the Cα-CO bond.
Resumo:
Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.
Resumo:
In this paper we propose and analyze a novel racetrack resonator based vibration sensor for inertial grade application. The resonator is formed with an Anti Resonance Reflecting Optical Waveguide (ARROW) structure which offers the advantage of low loss and single mode propagation. The waveguide is designed to operate at 1310nm and TM mode of propagation since the Photo-elastic co-efficient is larger than TE mode in a SiO2/ Si3N4/ SiO2. The longer side of the resonator is placed over a cantilever beam with a proof mass. A single bus waveguide is coupled to the resonator structure. When the beam vibrates the resonator arm at the foot of the cantilever experiences maximum stress. Due to opto-mechanical coupling the effective refractive index of the resonator changes hence the resonance wavelength shifts. The non uniform cantilever beam has a dimension of 1.75mm X 0.45mm X 0.020mm and the proof mass has a dimension of 3mm X 3mm X 0.380mm. The proof mass lowers the natural frequency of vibration to 410Hz, hence designed for inertial navigation application. The operating band of frequency is from DC to 100Hz and acceleration of less than 1g. The resonator has a Free Spectral Range (FSR) of 893pm and produces a phase change of 22.4mrad/g.
Resumo:
The complexes, cis-(CO)-trans-(Cl)-[Ru(SRaaiNR)(CO)(2)Cl-2] (2) and trans-(Cl)-[Ru(SRaaiNR)(CO)Cl-2] (3) (SRaaiNR = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles; R = Me (1a) and Et (1b)) have been synthesized and characterized. The structural confirmation is achieved by single crystal X-ray structure determinations. The complexes show Ru(III)/Ru(II) couple and ligand reductions. Electronic structure and spectral properties of the complexes have been explained with the DFT and TDDFT calculation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.
Resumo:
In this paper we consider the problems of computing a minimum co-cycle basis and a minimum weakly fundamental co-cycle basis of a directed graph G. A co-cycle in G corresponds to a vertex partition (S,V ∖ S) and a { − 1,0,1} edge incidence vector is associated with each co-cycle. The vector space over ℚ generated by these vectors is the co-cycle space of G. Alternately, the co-cycle space is the orthogonal complement of the cycle space of G. The minimum co-cycle basis problem asks for a set of co-cycles that span the co-cycle space of G and whose sum of weights is minimum. Weakly fundamental co-cycle bases are a special class of co-cycle bases, these form a natural superclass of strictly fundamental co-cycle bases and it is known that computing a minimum weight strictly fundamental co-cycle basis is NP-hard. We show that the co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the underlying undirected graph of G is a minimum co-cycle basis of G and it is also weakly fundamental.
Resumo:
In this study, the stability of anchored cantilever sheet pile wall in sandy soils is investigated using reliability analysis. Targeted stability is formulated as an optimization problem in the framework of an inverse first order reliability method. A sensitivity analysis is conducted to investigate the effect of parameters influencing the stability of sheet pile wall. Backfill soil properties, soil - steel pile interface friction angle, depth of the water table from the top of the sheet pile wall, total depth of embedment below the dredge line, yield strength of steel, section modulus of steel sheet pile, and anchor pull are all treated as random variables. The sheet pile wall system is modeled as a series of failure mode combination. Penetration depth, anchor pull, and section modulus are calculated for various target component and system reliability indices based on three limit states. These are: rotational failure about the position of the anchor rod, expressed in terms of moment ratio; sliding failure mode, expressed in terms of force ratio; and flexural failure of the steel sheet pile wall, expressed in terms of the section modulus ratio. An attempt is made to propose reliability based design charts considering the failure criteria as well as the variability in the parameters. The results of the study are compared with studies in the literature.
Resumo:
We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.