59 resultados para Track and field.
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Resumo:
The management of municipal solid waste has become an acute problem due to enhanced economic activities and rapid urbanisation. Increased attention has been given by the government in recent years to handle this problem in a safe and hygienic manner. In this regard, Municipal Solid Waste Management (MSWM) environmental audit has been carried out for Bangalore city through the collection of secondary data from government agencies, and interviews with stakeholders and field surveys. Field surveys were carried out in seven wards (representative samples of the city) to understand the practice and identify the lacunae. The MSWM audit that was carried out functional-element-wise in selected wards to understand the efficacy and shortfalls, if any, is discussed in this paper.
Resumo:
As the gap between processor and memory continues to grow Memory performance becomes a key performance bottleneck for many applications. Compilers therefore increasingly seek to modify an application’s data layout to improve cache locality and cache reuse. Whole program Structure Layout [WPSL] transformations can significantly increase the spatial locality of data and reduce the runtime of programs that use link-based data structures, by increasing the cache line utilization. However, in production compilers WPSL transformations do not realize the entire performance potential possible due to a number of factors. Structure layout decisions made on the basis of whole program aggregated affinity/hotness of structure fields, can be sub optimal for local code regions. WPSL is also restricted in applicability in production compilers for type unsafe languages like C/C++ due to the extensive legality checks and field sensitive pointer analysis required over the entire application. In order to overcome the issues associated with WPSL, we propose Region Based Structure Layout (RBSL) optimization framework, using selective data copying. We describe our RBSL framework, implemented in the production compiler for C/C++ on HP-UX IA-64. We show that acting in complement to the existing and mature WPSL transformation framework in our compiler, RBSL improves application performance in pointer intensive SPEC benchmarks ranging from 3% to 28% over WPSL
Resumo:
In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.
Resumo:
We present a critical study of the temperature and field dependence magnetization of high temperature superconductors (HTSCs). The controversial field dependence of dM/dInB for YBa(2)Cu(3)O(7) (YBCO) and Bi(2)Sr(2)CaCu(2)O(8) (BSCCO) is discussed using different models. Moreover, for both the systems the magnetization (M(H)) dependence is compared with field (H) dependence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Agroforestry has a potential for sequestering as much carbon if not more than forests. Massive benefits can be channeled to small farmers and landless labourers through cultivation of Tamarind and other fast growing and fruit yielding trees. This paper describes a project started by small farmers and landless labourers in a semiarid areas of south India. The aim is to upgrade dryland holdings of the member families through economically sound dry land horticulture, community woodlots, and planting of fast growing species along orchard and field boundaries. The small farmers invest massive labour inputs and project gives economic benefits to change their land use practices and improve environmental quality. This paper describes the planning. processes of the project, hurdles in finding AIJ partners, current monitoring procedures and costs of C sequestration. This shows this project is economically viable on its own, but initially needed, and continues to need Carbon credit investment in order to spread rapidly across the geopolitical region covered by the organization. It argues that economic gains to small farmers and landless labourers are the most certain way of achieving massive biomass increase and soil carbon replenishment, and that multiple holistic benefits are achieved through this kind of project.
Resumo:
Protein nanoparticles (NPs) have found significant applications in drug delivery due to their inherent biocompatibility, which is attributed to their natural origin. In this study, bovine serum abumin (BSA) nanoparticles were introduced in multilayer thin film via layer-by-layer self-assembly for localized delivery of the anticancer drug Doxorubicin (Dox). BSA nanoparticles (similar to 100 nm) show a high negative zeta potential in aqueous medium (-55 mV) and form a stable dispersion in water without agglomeration for a long period. Hence, BSA NPs can be assembled on a substrate via layer-by-layer approach using a positively charged polyelectrolyte (chitosan in acidic medium). The protein nature of these BSA nanoparticles ensures the biocompatibility of the film, whereas the availability of functional groups on this protein allows one to tune the property of the self-assembly to have a pH-dependent drug release profile. The growth of multilayer thin film was monitored by UV-visible spectroscopy, and the films were further characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The drug release kinetics of these BSA nanoparticles and their self-assembled thin film has been compared at a physiological pH of 7.4 and an acidic pH of 6.4.
Resumo:
The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Uniform La0.6Sr0.4MnO3 (LSMO) nanotubes of an average diameter 180 nm were synthesized by a modified sol-gel method employing nanochannel porous anodic alumina templates. The nanotubes were characterized chemically and structurally by XRD, SEM, EDX, and TEM. Postannealed (700 degrees C for 1 h hour) nanotubes were found to be polycrystalline from XRD and SAED studies. To get further insight into the nanotube structure, HRTEM studies were done, which revealed that obtained LSMO nanotubes were structurally constituted with nanoparticles of 3-12 nm size. These constituent nanoparticles were randomly aligned and self-knitted to build the nanotube wall. Investigation of magnetic properties at this structured nanoscale revealed remarkable irreversibility between the zero field cooling (ZFC) and field cooling (FC) magnetization curves accompanied with a peak in the ZFC curve indicating spin-glass-like behavior. Structural defects and compositional variations at surfaces and grain-boundaries of constituent nanoparticles might be responsible for this anomalous magnetic behavior.
Resumo:
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Transaction processing is a key constituent of the IT workload of commercial enterprises (e.g., banks, insurance companies). Even today, in many large enterprises, transaction processing is done by legacy "batch" applications, which run offline and process accumulated transactions. Developers acknowledge the presence of multiple loosely coupled pieces of functionality within individual applications. Identifying such pieces of functionality (which we call "services") is desirable for the maintenance and evolution of these legacy applications. This is a hard problem, which enterprises grapple with, and one without satisfactory automated solutions. In this paper, we propose a novel static-analysis-based solution to the problem of identifying services within transaction-processing programs. We provide a formal characterization of services in terms of control-flow and data-flow properties, which is well-suited to the idioms commonly exhibited by business applications. Our technique combines program slicing with the detection of conditional code regions to identify services in accordance with our characterization. A preliminary evaluation, based on a manual analysis of three real business programs, indicates that our approach can be effective in identifying useful services from batch applications.
Resumo:
The composites of xSrFe(12)O(19)-(1-x) BaTiO3 where x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1were prepared by Sol gel method and consequently densified at 1100 degrees C/90 min using microwave sintering method. The phase formation and diphase microstructure of the composite samples was examined by X-ray diffraction and field emission electron microscope (FESEM), respectively. The effects of constituent phase variation on the ferroelecrric, dielectric and magnetic properties were examined. It was observed that with a decrease of x, the Curie temperature shifted towards low temperature side. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.