109 resultados para Tert-butyl hydroperoxide
Resumo:
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A novel (main chain)-(side chain) vinyl polyperoxide, poly(alpha-(tert-butylperoxymethyl)styrene peroxide) (MCSCPP), an alternating copolymer of alpha-(tert-butylperoxymethyl)styrene (TPMS) and oxygen, has been synthesized by the oxidative polymerization of TPMS. The MCSCPP was characterized by H-1 NMR, C-13 NMR, IR, DSC, EI-MS, and GC-MS studies. The overall activation energy (E(a)) for the degradation of MCSCPP was found to be 27 kcal/mol. Formaldehyde and alpha-(tert-butylperoxy)acetophenone (TPAP) were identified as the primary degradation products of MCSCPP; TPAP was found to undergo further degradation. The side chain peroxy groups were found to be thermally more stable than those in the main chain. Polymerization of styrene in the presence of MCSCPP as initiator, at 80 degrees C, follows classical kinetics. The presence of peroxy segments in the polystyrene chain was confirmed by both H-1 NMR and thermal decomposition studies. Interestingly, unlike other vinyl polyperoxides, the MCSCPP initiator shows an increase in molecular weight with conversion.
Resumo:
C20H35N3O6 (Boc-Aib-DL-Pip-Aib-OMe, Boc = tert-butyloxycarbonyl, Aib = alpha-aminoisobutyric acid, Pip = pipecolic acid, OMe = methoxy), M(r) = 413.5, monoclinic, P2(1)/c, a = 18.055 (3), b = 15.048 (3), c = 17.173 (3) angstrom, beta = 91.7 (1)-degrees, V = 4663.8 (9) angstrom3, Z = 8, D(m) = 1.16, D(x) = 1.178 Mg m-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 0.081 mm-1, F(000) = 1792, T = 297 K. The final R value for 4925 [I greater-than-or-equal-to 3sigma(I)] reflections is 0.065 (wR = 0.067). The peptide backbone of the two independent molecules in the asymmetric unit is folded at the -Aib-Pip- sequence to form a type-I (I') beta-bend stabilized by a 1 <-- 4 intramolecular N-H...O=C hydrogen bond between the Aib(3) peptide N-H and Boc urethane C=O groups.
Resumo:
Full Paper: The copolyperoxides of various compositions of indene with methyl acrylate, ethyl acrylate and butyl acrylate have been synthesized by the free-radical-initiated oxidative copolymerization. The compositions of copolyperoxide obtained from H-1 and C-13 NMR spectra have been used to determine the reactivity ratios of the monomers. The copolyperoxides contain a greater proportion of the indene units in random placement. The NMR studies have shown irregularities in the copolyperoxide chain due to the cleavage reactions of the propagating peroxide radical. The thermal analysis by differential scanning calorimetry suggests alternating peroxide units in the copolyperoxide chain. From the activation energy for the thermal degradation, it was inferred that degradation occurs via the dissociation of the peroxide (O-O) bonds of the copolyperoxide chain. The flexibility of the polyperoxides in terms of glass transition temperature (T-g) has also been examined.
Resumo:
Catalytic amount of vanadium reagent with tert-butylhydroperoxide as the oxidant was found to be an excellent oxidizing agent in aqueous medium. Vanadium pentoxide with aq tert-butylhydroperoxide readily oxidizes primary benzylic azides to the corresponding acids and secondary benzylic azides to the corresponding ketones in excellent yields. Further, vanadium pentoxide and aq tert-butylhydroperoxide combination turned out to be an effective catalyst for the oxidation of alcohols. Using vanadium pentoxide and aq tert-butylhydroperoxide primary alcohols were oxidized to the corresponding acids, whereas secondary alcohols underwent a smooth transformation to furnish corresponding ketones in excellent yields. All the oxidations are performed in water. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers
Resumo:
The solubilities of butyl stearate and butyl laurate were determined in the temperature range of 308 K to 323 K and 313 K to 328 K, respectively, at pressures of 10 MPa to 16 MPa. The solubility of butyl laurate was higher than that of butyl stearate by almost an order in magnitude. Retrograde behavior was observed throughout the investigated pressure range. Semiempirical models such as Mendez-Teja, Chrastil, and other density-based models were used to correlate the experimental data of our work as well as several other liquid solutes.
Resumo:
Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.
Resumo:
Fifty-one novel 1-(cyclopropyl/2,4-difluorophenyl/t-butyl)-1,4-dihydro-6-fluoro-7-(sub secondary amino)-4-oxoquinoline-3-carboxylic acids were synthesized and evaluated for their antimycobacterial in vitro and in vivo against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC 2) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesized compounds, 7-(3-(diethylcarbamoyl)piperidin-1-yl)-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (7I) was found to be the most active compound in vitro with MIC of 0.09 mu M against MTB and MDR-TB respectively. In the in vivo animal model 7I decreased the mycobacterial load in lung and spleen tissues with 2.53- and 4.88-log10 protections respectively at a dose of 50 mg/kg body weight. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The photophysical behavior of the triplets of three aliphatic thioketenes, namely di-tert-butylthioketene (1), 2,6-di-tert-butylcyclohexylthioketene (2) and 2,2,6,6-tetramethylcyclohexylthioketene, has been studied in fluid solutions at room temperature by nanosecond laser flash photolysis. Upon 532 nm laser excitation into the S1 state, the thioketenes in concentrated benzene solutions produce very short-lived transient absorptions (τ < 5 ns; λmax ≈ 450 nm) attributable to their triplets. The photogeneration of the latter under S1 excitation has also been established by energy transfer to all-trans-1,6-diphenyl-1,3,5-hexatriene. The factors which render the triplet lifetimes short are shown to be intrinsic in origin (rather than self-quenching). Unlike thiocarbonyl compounds in general, the thioketenes posses low intersystem crossing yields (less than 0.1 in benzene). From the kinetics of the quenching of a series of sensitizer triplets by 1 and 2, the thioketene triplet energies are estimated to be 43 – 44 kcal mol−1.
Resumo:
Upon laser pulse excitation (Aex = 532 nm) into the lowest-lying '(n,a*) band system, pivalothiophenones in benzene solutions give rise to short-lived triplets (Ama: = 325-335 nm, em: = (1 1-15) X lo3 M-' cm-I) with quantitative intersystem crossing efficiencies. The triplet yields decrease slightly (by 10-30%) upon changing A, to 308 nm (Le., upon excitation into S2). Kinetic data are presented for intrinsic triplet lifetimes, self-quenching, and quenching by oxygen, di-tert-butylnitroxy radical, and various reagents capable of interacting with the triplets via energy, electron, or hydrogen-atom transfer and by biradical formation (possibly leading to cycloaddition). The mechanisms of the quenching processes are discussed. Relative to rigid aromatic thiones, namely, xanthione and thiocoumarin, the interaction of pivalothiophenone triplets with most of the quenchers are kinetically inefficient. This is interpreted primarily as a manifestation of the steric crowding at positions a to the thiocarbonyl group.