126 resultados para TEBUTHIURON DEGRADATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas cepacia CSV90 is able to utilize 2,4-dichlorophenoxyacetate (2,4-D) and 2-methyl-4-chlorophenoxyacetate as sole sources of carbon and energy. Mutants of the strain CSV90 which had lost this ability appeared spontaneously on a nonselective medium. The wild-type strain harbored a 90-kb plasmid, pMAB1, whereas 2,4-D-negative mutants either lost the plasmid or had a 70-kb plasmid, pMAB2. The plasmid pMAB2 was found to have undergone a deletion Of a 20-kb fragment of pMAB1. The plasmid-free mutants regained the ability to degrade 2,4-D after introduction of purified pMAB1 by electroporation. Cloning in Escherichia coli of a 10-kb BamHI fragment from pMAB1, the region absent in pMAB2, resulted in the expression of the gene tfdC encoding 3,5-dichlorocatechol 1,2-dioxygenase. After subcloning, the tfdC gene was located in a 1.6-kb HindIII fragment. The nucleotide sequence of the tfdC gene and the restriction map of its contiguous region are identical to those of the well-characterized 2,4-D-degradative plasmid pJP4 of Alcaligenes eutrophus, whereas the overall restriction maps of the two plasmids are different. The N-terminal 44-amino-acid sequence of the enzyme purified from the strain CSV90 confirmed the reading frame in the DNA sequence for tfdC and indicated that the initiation codon GUG is read as methionine instead of valine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized powders of TiO2 (anatase) were prepared by the hydrothermal method, acid-medium hydrolysis or by vacuum freeze-drying of sols, and annealing at temperatures <700-degrees-C. Photocatalytic activities of these powders in the mineralization of phenol, were evaluated in comparison to that of Degussa P25. Kinetic data indicated that surface hydroxylation had a retarding effect on the degradation of phenol. Formation of stable peroxotitanium species were observed on hydroxylated powders, whereas only V(Ti)-O- hole trap centres were detected by EPR on the heat treated samples. The data supports direct hole oxidation of the substrate preadsorbed on the photocatalyst, which is otherwise blocked by surface hydroxyls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been observed experimentally that the collective field emission from an array of Carbon Nanotubes (CNTs) exhibits fluctuation and degradation, and produces thermal spikes, resulting in electro-mechanical fatigue and failure of CNTs. Based on a new coupled multiphysics model incorporating the electron-phonon transport and thermo-electrically activated breakdown, a novel method for estimating accurately the lifetime of CNT arrays has been developed in this paper. The main results are discussed for CNT arrays during the field emission process. It is shown that the time-to-failure of CNT arrays increases with the decrease in the angle of tip orientation. This observation has important ramifications for such areas as biomedical X-ray devices using patterned films of CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Pd ion-substituted CeO2-ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer degradation in solution has several advantages over melt pyrolysis, The degradation of low-density polyethylene (LDPE) occurs at much lower temperatures in solution (280-360degreesC) than in conventional melt pyrolysis (400-450degreesC). The thermal degradation kinetics of LDPE in solution was investigated in this work. LDPE was dissolved in liquid paraffin and degraded for 3 h at various temperatures (280-360degreesC). Samples were taken at specific times and analyzed with high-pressure liquid chromatography/gel permeation chromatography for the molecular weight distribution (MWD), The time evolution of the MWD was modeled with continuous distribution kinetics. Data indicated that LDPE followed random-chain-scission degradation. The rapid initial drop in molecular weight, observed up to 45 min, was attributed to the presence of weak links in the polymer. The rate coefficients for the breakage of weak and strong links were determined, and the corresponding average activation energies were calculated to be 88 and 24 kJ/mol, respectively. (C) 2002 John Wiley Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first synthesis of hyperbranched polyacetals via a melt transacetalization polymerization process. The process proceeds via the self-condensation of an AB(2) type monomer carrying a hydroxyl group and a dimethylacetal unit; the continuous removal of low boiling methanol drives the equilibrium toward polymer formation. Because of the susceptibility of the acetal linkage to hydrolysis, the polymer degrades readily under mildly acidic conditions to yield the corresponding hydroxyl aldehyde as the primary product. Furthermore, because of the unique topology of hyperbranched structures, the rate of polymer degradation was readily tuned by changing just the nature of the end-groups alone; instead of the dimethylacetal bearing monomer, longer chain dialkylacetals (dibutyl and dihexyl) monomers yielded hyperbranched polymers carrying longer alkyl groups at their molecular periphery. The highly branched topology and the relatively high volume fraction of the terminal alkyl groups resulted in a significant lowering of the ingress rates of the aqueous reagents to the loci of degradation, and consequently the degradation rates of the polymers were dramatically influenced by the hydrophobic nature of the terminal alkyl substituents. The simple synthesis and easy tunability of the degradation rates make these materials fairly attractive candidates for use as degradable scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyphosphate ester was synthesized by interfacial polycondensation of bisphenol-A and phenylphosphorodichloridate. Accelerated hydrolytic degradation studies were conducted under alkaline conditions. The effect of concentration of alkali and temperature were monitored. The rate of degradation reached a maximum value at 6 molar sodium hydroxide solution and then reduced. The activation energy for hydrolytic degradation was found to be 45 kcal/mol. Diffusion of alkali into the polymer pellet was studied at various concentrations of alkali and at various temperatures. The rate of diffusion also attained a maximum at 6M NaOH and the activation energy for diffusion process was found to be 12 kcal/mol. (C) 2002 John Wiley Sons, Inc.