453 resultados para Soil physical chemistry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and ferralsol areas). This study also showed that O. obesus has a limited effect on soil physical properties. No differences in soil particle size, pH, or the C:N ratio and base saturation were measured whereas the C and N contents were reduced and CEC was higher in termite nest soils in both environments. Clay mineralogical composition was also measured, and showed the presence of higher amounts of smectite clays in termite nest soils, which thus explained the increasing CEC despite the reduced C and N content. However, the main difference was the shape of the termite mounds. The degradation of the nests created a hillock of eroded soil at the base of termite mounds in the vertisol while only a thin layer of eroded soil was observed in the ferralsol. The increased degradation of termite mounds in the vertisol is explained by the presence of smectites (2:1 swelling clays), which confer macroscopic swelling and shrinking characteristics to the soil. Soil shrinkage during the dry season leads to the formation of deep cracks in the termite mounds that allow rain to rapidly penetrate inside the mound wall and then breakdown unstable aggregates. In conclusion, it appears that despite a similar abundance, termite mound properties depend to a large extent on the soil properties of their environments. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction of [M2Cl2(mu-Cl)(2)(PR3)(2)] (M=Pd or Pt; PR3=PEt3, PBu3, PMe2Ph, PMePh2) with lithium amidinate or sodium triazenide gave binuclear complexes containing amidinato- or triazenido-bridges, [M2Cl2(mu-ArNENAr)(2)(PR3)(2)] (E=CH, CMe or N). These complexes were characterized by elemental analysis and NMR (H-1, P-31 or Pt-195) data. The structures of two complexes, [(PdCl2)-Cl-2(mu-PhNC(Me)NPh)(2)(PMe2Ph)(2)] (10) and [Pt2Cl2(mu-PhNNNPh)(2)(PEt3)(2)] (11) were established by single crystal X-ray structural analyses. The Pt-195 NMR data Show coupling between two metal centers in the cis triazenido-bridged complex. The corresponding amidinate bridged complex does not show coupling. The role of the bridging ligand in mediating interaction between the metal centers is probed through Extended Huckel Theory (EHT) calculations. It is suggested that M-M interactions are primarily affected by the bridging ligands

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: The H-1 NMR spectra of N-(2-pyridyl), N'-(3-pyridyl)ureas and N-(2-pyridyl), N'-(4-pyridyl)ureas in CDCl3 and (CD3)(2)CO have been assigned with the aid of COSY and NOE experiments and chemical shift and coupling constant correlations, The C-13 NMR spectra in CDCl3 were analysed utilizing the HETCOR and proton coupled spectra, The H-1 NMR spectra, NOE effects and MINDO/3 calculations have been utilized to show that the molecular conformation of these compounds has the 2-pyridyl ring coplanar with the urea plane with the N-H group hydrogen bonded to the nitrogen of the 2-pyridyl group on the other urea nitrogen while the 3/4-pyridyl group rotates rapidly about the N-C-3/N-C-4 bond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The title molecule, C21H18O8, crystallizes in two crystal polymorphs, see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009), E65, o314-o315]. The molecules of both polymorphs differ by the conformation of the oxomethylacetate groups. The title molecules are rather planar compared to the molecules of the other polymorph. In the title molecule, one of the oxomethylacetate groups is disordered (occupancies of 0.6058/0.3942). The structures of both polymorphs are stabilized by C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions. Due to the planarity of the title molecules and similar intermolecular interactions, the title molecules are more densely packed than those of the other polymorph.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The title molecule, C21H18O8, crystallizes in two crystal polymorphs,see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009),E65, o312-o313]. The main difference between the two polymorphs is in the conformation of the oxomethylacetate groups with regard to the almost planar [total puckering amplitude 0.047 (2) angstrom] chromene ring. In the title compound, the best planes of the oxomethylacetate groups through the non-H atoms are almost perpendicular to the chromene ring [making dihedral angles of 89.61 (6) and 80.59 (5)degrees], while in the second polymorph the molecules are close to planar. Both crystal structures are stabilized by C-H center dot center dot center dot O.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two series of thermotropic main chain discotic liquid crystalline polyethers, PR4m-n, based on rufigallol were prepared starting from the symmetric tetraethers of rufigallol, R4m; m and n represent the number of carbon atoms in the side chain and spacer segment, respectively. The symmetric tetraethers were in turn readily prepared by selective alkylation of rufigallol under controlled phase-transfer conditions. GPC analysis of the polymers suggested that they were all of moderate molecular weights, with M-n varying between 5400 and 17 000. The length of the spacer segment n in these polyethers was systematically varied, and its effect on the phase transition temperatures and the mesophase structure was examined using DSC, polarized light microscopy, and X-ray diffraction. It is noticed that when the spacer lengths are relatively long(n greater than or equal to 2m), the isotropization temperature (TD-i) decreases as the spacer length n increases, an observation that is in accordance with those previously made. However, when the spacer lengths are relatively small (n < 2m), the dependence of TD-i is quite the opposite; TD-i actually increases with an increase in spacer length. Furthermore, X-ray diffraction studies indicate that, in the discotic columnar mesophases that are formed, the columns pack in a hexagonal manner when n greater than or equal to 2m, while they do so in a rectangular lattice when n < 2m, leading to the formation of Dh and Dr mesophases, respectively. Finally, comparison of the discotic polyethers with their low molar mass analogues confirms the role of polymerization in stabilizing the mesophase; while all the polymers exhibit columnar mesophases, some of their low molar mass analogues are not liquid crystalline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.