120 resultados para Semi-Regular Operators
Resumo:
Semi-similar solutions of the unsteady compressible laminar boundary layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer are studied for all the second-order boundary layer effects when the free stream velocity varies arbitrarily with time. The set of partial differential equations governing the unsteady compressible second-order boundary layers representing all the effects are derived for the first time. These partial differential equations are solved numerically using an implicit finite-difference scheme. The results are obtained for two particular unsteady free stream velocity distributions: (a) an accelerating stream and (b) a fluctuating stream. It is observed that the total skin friction and heat transfer are strongly affected by the surface mass transfer and wall temperature. However, their variation with time is significant only for large times. The second-order boundary layer effects are found to be more pronounced in the case of no mass transfer or injection as compared to that for suction. Résumé Des solutions semi-similaires d'écoulement variable compressible de couche limite sur des corps bi-dimensionnels thermique, sont étudiées pour tous les effets de couche limite du second ordre, lorsque la vitesse de l'écoulement libre varie arbitrairement avec le temps. Le systéme d'équations aux dérivées partielles représentant tous les effets est écrit pour la premiére fois. On le résout numériquement á l'aide d'un schéma implicite aux différences finies. Les résultats sont obtenus pour deux cas de vitesse variable d'écoulement libre: (a) un écoulement accéléré et (b) un écoulement fluctuant. On observe que le frottement pariétal total et le transfert de chaleur sont fortement affectés par le transfert de masse et la température pariétaux. Néanmoins, leur variation avec le temps est sensible seulement pour des grandes durées. Les effets sont trouvés plus prononcés dans le cas de l'absence du transfert de masse ou de l'injection par rapport au cas de l'aspiration.
Resumo:
We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).
Resumo:
The photoquenching of EL2 in semi‐insulating gallium arsenide is seen to be a complex process, where at low temperatures the initial slow quenching is followed by a switch to fast quenching. A possible explanation involving lattice strain mediated cooperative structural relaxation arising out of transition to the metastable state is proposed.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
The status of the tree biomass resource was investigated in Ungra, a semi-arid village ecosystem in South India. There were 57 tree species with 12 trees capita−1 and 35 trees ha−1. Multiple benefit yielding local tree species dominated the village ecosystem, while fuel only or single end use trees accounted for a small proportion of trees. The standing tree biomass is adequate to meet the requirement of biomass fuels for cooking only for about two years. Village tree biomass is presently being depleted largely for export to urban areas. Tree regeneration is now characterized by transformation from multiple-use local tree species to a few single-use species. A large potential exists for tree biomass production along field boundaries (bunds), stream banks and roadsides. Biomass estimation equations were developed for 10 species.
Resumo:
The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.
Resumo:
The easily constructed bile acid-based semi-rigid molecular tweezer 2 binds guest 8 in chloroform with an association constant of 83 dm(3) mol(-1).
Resumo:
An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones corresponding to operators in the Cowen-Douglas class B-n(D) are identified. The classification of homogeneous operators in B-n(D) is completed using an explicit realization of these operators. We also show how the homogeneous operators in B-n(D) split into similarity classes. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present robust semi-blind (SB) algorithms for the estimation of beamforming vectors for multiple-input multiple-output wireless communication. The transmitted symbol block is assumed to comprise of a known sequence of training (pilot) symbols followed by information bearing blind (unknown) data symbols. Analytical expressions are derived for the robust SB estimators of the MIMO receive and transmit beamforming vectors. These robust SB estimators employ a preliminary estimate obtained from the pilot symbol sequence and leverage the second-order statistical information from the blind data symbols. We employ the theory of Lagrangian duality to derive the robust estimate of the receive beamforming vector by maximizing an inner product, while constraining the channel estimate to lie in a confidence sphere centered at the initial pilot estimate. Two different schemes are then proposed for computing the robust estimate of the MIMO transmit beamforming vector. Simulation results presented in the end illustrate the superior performance of the robust SB estimators.
Resumo:
We present results for one-loop matching coefficients between continuum four-fermion operators, defined in the Naive Dimensional Regularization scheme, and staggered fermion operators of various types. We calculate diagrams involving gluon exchange between quark fines, and ''penguin'' diagrams containing quark loops. For the former we use Landau-gauge operators, with and without O(a) improvement, and including the tadpole improvement suggested by Lepage and Mackenzie. For the latter we use gauge-invariant operators. Combined with existing results for two-loop anomalous dimension matrices and one-loop matching coefficients, our results allow a lattice calculation of the amplitudes for KKBAR mixing and K --> pipi decays with all corrections of O(g2) included. We also discuss the mixing of DELTAS = 1 operators with lower dimension operators, and show that, with staggered fermions, only a single lower dimension operator need be removed by non-perturbative subtraction.