264 resultados para Rtd-1
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
Using computer modeling of three-dimensional structures and structural information available on the crystal structures of HIV-1 protease, we investigated the structural effects of mutations, in treatment-naive and treatment-exposed individuals from India and postulated mechanisms of resistance in clade C variants. A large number of models (14) have been generated by computational mutation of the available crystal structures of drug bound proteases. Localized energy minimization was carried out in and around the sites of mutation in order to optimize the geometry of interactions present. Most of the mutations result in structural differences at the flap that favors the semiopen state of the enzyme. Some of the mutations were also found to confer resistance by affecting the geometry of the active site. The E35D mutation affects the flap structure in clade B strains and E35N and E35K mutation, seen in our modeled strains, have a more profound effect. Common polymorphisms at positions 36 and 63 in clade C also affected flap structure. Apart from a few other residues Gln-58, Asn-83, Asn-88, and Gln-92 and their interactions are important for the transition from the closed to the open state. Development of protease inhibitors by structure-based design requires investigation of mechanisms operative for clade C to improve the efficacy of therapy.
Resumo:
Examination of the symmetric Hantzsch 1,4-dihydropyridine ester derivatives of the prototypical nifedipine molecule indicates the tendency of this class of molecule to form a common packing motif. Crystal structure analysis of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic diesters and analogs reveals that they form extended chains, characterized as the C(6) packing motif, via intermolecular (amine) N-H...O=C (C3,C5 carbonyl) hydrogen bonds. In addition, all the prepared derivatives also satisfy the basic structural requirements for their high binding efficiency to the receptor. The reproducible C(6) packing motif observed among these compounds has a use in the design of solid-state materials.
Resumo:
It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
The system (1-x)PbTiO3-(x)BiAlO3 has been investigated with regard to its solid solubility, crystal structure, microstructure, and ferroelectric transition. The unit cell volume and the tetragonality exhibit anomalous behavior near x=0.10. The Curie point (T-C) of PbTiO3 was however found to be nearly unchanged. The study seems to suggest that the decrease in the stability of the ferroelectric state due to dilution of the Ti-sublattice by smaller sized Al+3 ions is compensated by the increase in the ferroelectric stability by the Bi+3 ions.
Resumo:
The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.
Resumo:
The reaction of Cu(II), Zn(II), Cd(II) and Hg(II) chlorides and bromides with imidazoline-2-thione (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (where M=Cu(I)); copper(II) halides yield Cu(I) complexes. On the basis of infrared and 13C n.m.r.
Resumo:
The crystal structures of two peptides containing 1-aminocyclohexanecarboxylic acid (Acc6) are described. Boc-Aib-Acc6-NHMe · H2O adopts a β-turn conformation in the solid state, stabilized by an intramolecular 4 → 1 hydrogen bond between the Boc CO and methylamide NH groups. The backbone conformational angles (φAib = – 50.3°, ψAib = – 45.8°; φAcc6 = – 68.4°, ψAcc6 = – 15°) lie in between the values expected for ideal Type I or III β-turns. In Boc-Aib-Acc6-OMe, the Aib residue adopts a partially extended conformation (φAib = – 62.2°, ψAib = 143°) while the Acc6residue maintains a helical conformation (φAcc6 = 48°, ψAcc6= 42.6°). 1H n.m.r. studies in CDCl3 and (CD3)2SO suggest that Boc-Aib-Acc6-NHMe maintains the β-turn conformation in solution.
Resumo:
A combination of experimental data and theoretical calculations has been used to estimate the electron affinities of simple primary, secondary, and tertiary alkyl radicals and the proton affinities of the corresponding anions. With the exception of cyclopropyl, such carbanionsâ are indicated to be unstable towards loss of an electron and are not expected to exist as long-lived species in the gas phase.
Resumo:
The conformational analysis of a protected homodipeptide of 1-aminocyclopentanecarboxylic acid (Acc5) has been carried out. 1H-nmr studies establish a -turn conformation for Boc-Acc5-Acc5-NHMe in chloroform and dimethylsulfoxide solutions involving the methylamide NH in an intramolecular hydrogen bond. Supportive evidence for the formation of an intramolecular hydrogen bond is obtained from ir studies. X-ray diffraction studies reveal a type III -turn conformation in the solid state stabilized by a 4 1 hydrogen bond between the Boc CO and methylamide NH groups. The , values for both Acc5 residues are close to those expected for an ideal 310-helical conformation ( ± 60°, ±30°).
Resumo:
The thermodynamic activities of MgO in the NaCl-type solid solutions which can exist in xMgO + (1 x)MnO have been determined in the temperature range 1163 to 1318 K from a solid-state galvanic cell incorporating MgF2 as the solid electrolyte. The activities of MnO have been calculated by a graphical Gibbs-Duhem integration method. The activities of both the components exhibit positive deviations from ideality over the entire composition range. The excess molar enthalpies are found to be positive. Further, xMgO + (1 - x)MnO does not conform to regular-solution behaviour. The origin of the excess thermodynamic properties is discussed in relation to the cationic size disparity and the crystal-field effects.
Resumo:
In the title compound, C17H15Cl2NO, the dimethylaminophenyl group is close to coplanar with the central propenone group [dihedral angle =13.1 (1)degrees between the mean planes], while the dichlorophenyl group is twisted from the plane [dihedral angle = 64.0 (1)degrees].In the crystal, C-H center dot center dot center dot O and weak C-H center dot center dot center dot pi interactions are formed between molecules.