72 resultados para Residual forestry biomass
Resumo:
The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.
Resumo:
A waste fungal biomass containing killed cells of Aspergillus niger was efficiently used in the removal of toxic metal ions such as nickel, calcium, iron and chromium from aqueous solutions. The role of different parameters such as initial metal ion concentration, solution pH and biomass concentration on biosorption capacity was established. The maximum metal uptake was found to be dependent on solution pH and increased with biomass loading upto 10g/L. The adsorption densities for various metal ions could be arranged as Ca>Cr (III)>Ni>Fe>Cr (VI). The effect of the presence of various metal ions in binary, ternary and quaternary combinations on biosorption was also assessed. Ni uptake was significantly affected, while that of Cr (VI) the least, in the presence of other metal ions. Uptake of base metals from an industrial cyanide effluent was studied using different species of fungi such as Aspergillus niger, Aspergillus terreus and Penicillium funiculosum and yeast such as Saccharomyces cerevisiae which were isolated from a gold mine. Traces of gold present in the cyanide effluent could be efficiently recovered. Among the four base metal contaminants present in the cyanide effluent, zinc was found to be most efficiently biosorbed, followed by iron, copper and lead. The role of both living and dead biomass on biosorption was distinguished and probable mechanisms illustrated.
Resumo:
In -situ soils in gee-material spectrum might arise due to sedimentation or could be non-sedimentary residual formations. The inherent nature and diversity of geological processes involved in the soil formation stage itself are responsible for a wide variability in the in-situ state of the soil. In this paper the possibility of analyses to arrive at engineering parameters of residual soils with varied degrees of residual or acquired cementation by the use of physical and in-situ parameters normally determined in routine investigations, are examined. An Intrinsic State Line,(ISL), with reference to an intrinsic state parameter (e/e(L)) and its variation with effective stress for reconstituted clays has been developed for residual tropical soils of non-sedimentary origin. In relation to the Intrinsic State Line (ISL), the undisturbed state, e, the potential parameter, e(L), along with the overburden pressure data has been analyzed to identify the dominance of cementation or stress history or both in controlling the compressibility and strength behaviour of natural residual soil. The location of yield stress point in relation to the ISL, pre-, and post- yield stress, compression indices along the e- log sigma(v) path provide a simple means to the analysis of the compressibility characteristics of cemented soils for analysis.
Resumo:
ZrB2 with different amounts of B4C additive (0-5 wt.%) has been hot pressed at 2000 degrees C and 25 MPa for 1 h. By addition of B4C, density as well as micro-hardness increased. For lower B4C content (0.5 and 1 wt.%), hot pressed ZrB2 shows considerable improvement in flexural strength after exposure in air at 1000 C for 5 h, while higher B4C content (3 and 5 wt.%) leads to marginal or no improvement. For any content of B4C, flexural strength after exposure in air at 1500 degrees C for 5 h is lower than as-hot pressed ZrB2. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.
Resumo:
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.106015]
Resumo:
Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework. The residual error estimator, referred to as the R-parameter is used to derive refinement and coarsening criteria for the adaptive algorithms. An adaptive strategy based on the R-parameter is proposed for continuous flows, while a hybrid adaptive algorithm employing a combination of error indicators and the R-parameter is developed for discontinuous flows. Numerical experiments for inviscid and viscous flows on different grid topologies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal grids.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.
Resumo:
Epoch is defined as the instant of significant excitation within a pitch period of voiced speech. Epoch extraction continues to attract the interest of researchers because of its significance in speech analysis. Existing high performance epoch extraction algorithms require either dynamic programming techniques or a priori information of the average pitch period. An algorithm without such requirements is proposed based on integrated linear prediction residual (ILPR) which resembles the voice source signal. Half wave rectified and negated ILPR (or Hilbert transform of ILPR) is used as the pre-processed signal. A new non-linear temporal measure named the plosion index (PI) has been proposed for detecting `transients' in speech signal. An extension of PI, called the dynamic plosion index (DPI) is applied on pre-processed signal to estimate the epochs. The proposed DPI algorithm is validated using six large databases which provide simultaneous EGG recordings. Creaky and singing voice samples are also analyzed. The algorithm has been tested for its robustness in the presence of additive white and babble noise and on simulated telephone quality speech. The performance of the DPI algorithm is found to be comparable or better than five state-of-the-art techniques for the experiments considered.
Resumo:
The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
In recent years new emphasis has been placed on problems of the environmental aspects of waste disposal, especially investigating alternatives to landfill, sea dumping and incineration. There is also a strong emphasis on clean, economic and efficient processes for electric power generation. These two topics may at first appear unrelated. Nevertheless, the technological advances are now such that a solution to both can be combined in a novel approach to power generation based on waste-derived fuels, including refuse-derived fuel (RDF) and sludge power (SP) by utilising a slagging gasifier and advance fuel technology (AFT). The most appropriate gasification technique for such waste utilisation is the British Gas/Lurgi (BGL) high pressure, fixed bed slagging gasifier where operation on a range of feedstocks has been well-documented. This gasifier is particularly amenable to briquette fuel feeding and, operating in an integrated gasification combined cycle mode (IGCC), is particularly advantageous. Here, the author details how this technology has been applied to Britain's first AFT-IGCC Power Station which is now under development at Fife Energy Ltd., in Scotland, the former British Gas Westfield Development Centre.