96 resultados para Radical Polymerization, Vinylphosphonic acid, Poly(vinylphosphonic acid), Proton Conductivity
Resumo:
The morphology and crystal growth of poly(l-lactic acid), PLLA have been studied from the melt as a function of undercooling and molecular weight using hot stage microscopy. Attention has been given to the application of growth rate equation on the growth rate data of PLLA and thus various nucleation parameters have been calculated. The criteria of Regime I and Regime II types of crystallization has been applied for the evaluation of substrate lengths.
Resumo:
The oxidative degradation of poly(acrylic acid) (PAA), a water soluble polymer, was studied at various temperatures with different concentrations of persulfates, potassium persulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS). The photodegradation of PAA was also examined with APS as oxidizer. The degraded samples were analyzed for the time evolution of molecular weight distribution by gel permeation chromatography. A theoretical model based on the continuous distribution kinetics was developed that accounted for the polymer degradation and the dissociation of persulfate. The rate coefficients for the oxidative and photooxidative degradation of PAA were determined from the parametric fit of the model with experimental data. The rate of degradation increased with increasing amount of persulfate in both oxidative and photooxidative degradation. The rate of degradation also increased with increasing temperature in the case of oxidative degradation.
Resumo:
Diluents (either low molecular weight compounds orother polymers) are known to modify the morphology, the rates of nucleation and growth of polymers 1- 4. Recentlybinary systems in which both the components crystallize simultaneously to give a eutectic solid have been studied with great interest. Carbonnei et al.
Resumo:
A single administration of 2-allyl-2-isopropylacetamide, a porphyrinogenic drug, enhanced the 32P-labelling of nucleoplasmic as well as cytoplasmic poly(A)-containing RNA in rat liver. The synthesis of total microsomal RNA is only marginally increased under these conditions. The drug enhances the labelling of a variety of cytoplasmic poly(A)-containing RNA species, and this effect is counteracted by the simultaneous administration of haemin. 2-Allyl-2-isopropylacetamide also enhanced the release of RNA from the nucleus to the cytoplasm.
Resumo:
The relative stabilities of a- and Blo-helical structures for polymers of a-aminoisobutyric acid (Aib) have been worked out, using the classical potential energy functions. To make a comparative study, we have used Buckingham "6-exp" and Kitaigorodsky's potential functions. Conformational analysis of the dipeptide segment with Aib residue indicates the necessity for nonplanar distortion of the peptide unit, which is a common feature in the observed crystal structures with Aib residues. In the range of Aw -10 to +loo studied, a-helical conformations are preferred in the region -3" < Aw < +loo, and Blo-helical conformations are preferred in the region -3" > Aw > -10'. Minimum energy conformations for right-handed structures are found in the +ue region of Aw and correspondingly for left-handed structures in the -ue region of Aw. For Aw - 6", a-helical structures have four- or near fourfold symmetry with h - 1.5 A. Such a helix with n = 4 and h = 1.5 A is termed an a'-helix. This structure is found to be consistent with the electron diffraction data of Malcolm3 and energetically more favorable than the standard 310-helix.
Resumo:
Poly(vinyl pyrrolidone) and poly(methacrylic acid) multilayer capsules based on hydrogen bonding have been prepared by the layer-by-layer approach and used to encapsulate and release rifampicin, an antituberculosis drug. Removal of silica core using a buffer of ammonium fluoride and hydrofluoric acid at about pH 3 was found to produce better capsules than hydrofluoric acid alone. An eight-layered capsule had a wall thickness of 20 rim. Maximum encapsulation was found to be about 86 mu g at 40 degrees C with 1 +/- 0.2 x 10(6) capsules. Release studies showed a burst kind of release and maximum release was obtained above pH 7 where the capsules disintegrate rapidly thereby releasing the drug in a short period. Interactions studies with Mycobacterium smegmatis showed that the capsules were cytocompatible and the released drug functioned with the same efficacy as the free drug.
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Dicobalt(II) complexes [{(B)Co-11)(2)(mu-dtdp)(2)] (1-3) of 3,3'-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido13,2-a:2',3'-clphenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of similar to 3.9 p per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving K-b values within 4.3 x 10(5)-4.0 x 10(6) M-1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.31 mu M in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 mu M. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 mu M in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 mu M). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
In this paper, we report the results pretaining to the study of the structural, microstructural and the dielectric properties of poly(I-lithocholic acid) (PL), and the composite of PL dispersed in PMMA. The density of the composites was measured using Archimedes principle. The microstructural properties of the composities were studied using XRD and SEM techniques, which give an idea about the dispersion of the polymer PL in the PMMA matrix. The dielectric constants er of the composites were measured with a HP 4194A Impedance/Gain-Phase Analyzer in the frequency range 100 Hz-40 MHz at room temperature. The dielectric constants of the composites at different frequencies were predicted using Clasius-Mossotti and Maxwell's models.
Resumo:
Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.