122 resultados para Profession, Choice of.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The apparent contradiction between the exact nature of the interaction parameter formalism as presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of the expression for the logarithm of the activity coefficient of a solute in a multi-component system. The integrals are therefore path dependent. Formulae for integration along paths of constant Xi,or X i/Xj are presented. The expression for In γsolvent given by Pelton and Bale is valid only in the limit that the mole fraction of solvent tends to one. The truncation also destroys the general relations between interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special relationships are obtained between interaction parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an algorithm for generating the Interior Medial Axis Transform (iMAT) of 3D objects with free-form boundaries. The algorithm proposed uses the exact representation of the part and generates an approximate rational spline description of the iMAT. The algorithm generates the iMAT by a tracing technique that marches along the object's boundary. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction points and the search for these junction points is done in an efficient way. The algorithm works for multiply-connected objects as well. Results of the implementation are provided. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present article deals with the development of a finite element modelling approach for the prediction of residual velocities of hard core ogival-nose projectiles following normal impact on mild steel target plates causing perforation. The impact velocities for the cases analysed are in the range 818–866.3 m/s. Assessment of finite element modelling and analysis includes a comprehensive mesh convergence study using shell elements for representing target plates and solid elements for jacketed projectiles with a copper sheath and a rigid core. Dynamic analyses were carried out with the explicit contact-impact LS-DYNA 970 solver. It has been shown that proper choice of element size and strain rate-based material modelling of target plate are crucial for obtaining test-based residual velocity.The present modelling procedure also leads to realistic representation of target plate failure and projectile sheath erosion during perforation, and confirms earlier observations that thermal effects are not significant for impact problems within the ordnance range. To the best of our knowledge, any aspect of projectile failure or degradation obtained in simulation has not been reported earlier in the literature. The validated simulation approach was applied to compute the ballistic limits and to study the effects of plate thickness and projectile diameter on residual velocity, and trends consistent with experimental data for similar situations were obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abrin is a type II ribosome-inactivating protein comprising of two subunits, A and B. Of the two, the A-subunit harbours the RNA-N-glycosidase activity and the B subunit is a galactose specific lectin that enables the entry of the protein inside the cell. Abrin inhibits protein synthesis and has been reported to induce apoptosis in several cell types. Based on these observations abrin is considered to have potential for the construction of immunotoxin in cell targeted therapy. Preliminary data from our laboratory however showed that although abrin inhibited the protein synthesis in all cell types, the mode of cell death varied. The aim of the present study was therefore to understand different death pathways induced by abrin in different cells. We used the human B cell line, U266B1 and compared it with the earlier studied T cell line Jurkat, for abrin-mediated inhibition of protein translation as well as cell death. While abrin triggered programmed apoptosis in Jurkat cells in a caspase-dependent manner, it induced programmed necrosis in U266B1 cells in a caspase-independent manner, even when there was reactive oxygen species production and loss of mitochondrial membrane potential. The data revealed that abrin-mediated necrosis involves lysosomal membrane permeabilization and release of cathepsins from the lysosomes. Importantly, the choice of abrin-mediated death pathway in the cells appears to depend on which of the two events occurs first: lysosomal membrane permeabilization or loss of mitochondrial membrane potential that decides cell death by necrosis or apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurements of the electrical resistivity of thin potassium wires at temperatures near 1 K have revealed a minimum in the resistivity as a function of temperature. By proposing that the electrons in these wires have undergone localization, albeit with large localization length, and that inelastic-scattering events destroy the coherence of that state, we can explain both the magnitude and shape of the temperature-dependent resistivity data. Localization of electrons in these wires is to be expected because, due to the high purity of the potassium, the elastic mean free path is comparable to the diameters of the thinnest samples, making the Thouless length lT (or inelastic diffusion length) much larger than the diameter, so that the wire is effectively one dimensional. The inelastic events effectively break the wire into a series of localized segments, whose resistances can be added to obtain the total resistance of the wire. The ensemble-averaged resistance for all possible segmented wires, weighted with a Poisson distribution of inelastic-scattering lengths along the wire, yields a length dependence for the resistance that is proportional to [L3/lin(T)], provided that lin(T)?L, where L is the sample length and lin(T) is some effective temperature-dependent one-dimensional inelastic-scattering length. A more sophisticated approach using a Poisson distribution in inelastic-scattering times, which takes into account the diffusive motion of the electrons along the wire through the Thouless length, yields a length- and temperature-dependent resistivity proportional to (L/lT)4 under appropriate conditions. Inelastic-scattering lifetimes are inferred from the temperature-dependent bulk resistivities (i.e., those of thicker, effectively three-dimensional samples), assuming that a minimum amount of energy must be exchanged for a collision to be effective in destroying the phase coherence of the localized state. If the dominant inelastic mechanism is electron-electron scattering, then our result, given the appropriate choice of the channel number parameter, is consistent with the data. If electron-phason scattering were of comparable importance, then our results would remain consistent. However, the inelastic-scattering lifetime inferred from bulk resistivity data is too short. This is because the electron-phason mechanism dominates in the inelastic-scattering rate, although the two mechanisms may be of comparable importance for the bulk resistivity. Possible reasons why the electron-phason mechanism might be less effective in thin wires than in bulk are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At an EMBO Workshop on DNA Curvature and Bending, held at Churchill College, Cambridge, on 10-15 September 1988, two sessions were scheduled on definitions of parameters used to describe the geometry of nucleic acid chains and helices, and a common nomenclature for these parameters. The most widely used library of helix analysis programs, HELIB (Fratini et al., 1982; Dickerson, 1985) suffers from the fact that the translations and rotations as defined are not fully independent and depend to a certain extent upon the choice of overall helix axis. Several research groups have been engaged independently in developing alternative programs for the geometrical analysis of polynucleotide chains, but with different definitions of quantities calculated and with widely different nomenclature even when the same parameter was involved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a modernising world, building and construction trends in recent urban centres such as Bangalore, set precedence for developments in other urban centres of the country. Under such conditions, evaluating the current state of building practices could prove useful for identifying the likely nature of nationwide building trends. This paper comprises a study to evaluate the current state of domestic concealed wiring practices in the context of a modern urban centre area in India. Presently, concealed wiring is the predominant wiring method adopted for residences, both bungalows and apartments. A modern residential block in the city of Bangalore (India) was chosen as the study area. The study included extensive interaction and surveys amongst residents, professionals (architects and engineers) and site personnel (contractors and electricians). In addition, the study also included site verification on the state of wiring practices in the residential block. The study indicates that while aesthetics was the prime reason that dictated the choice of concealed wiring, its effectiveness as an appropriate and safe wiring method is severely compromised. Details of the study, results and recommendations are presented in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel optical method is proposed and demonstrated, for real-time dimension estimation of thin opaque cylindrical objects. The methodology relies on free-space Fraunhofer diffraction principle. The central region, of such tailored diffraction pattern obtained under suitable choice of illumination conditions, comprises of a pair of `equal intensity maxima', whose separation remains constant and independent of the diameter of the diffracting object. An analysis of `the intensity distribution in this region' reveals the following. At a point symmetrically located between the said maxima, the light intensity varies characteristically with diameter of the diffracting object, exhibiting a relatively stronger intensity modulation under spherical wave illumination than under a plane wave illumination. The analysis reveals further, that the said intensity variation with diameter is controllable by the illumination conditions. Exploiting these `hitherto unexplored' features, the present communication reports for the first time, a reliable method of estimating diameter of thin opaque cylindrical objects in real-time, with nanometer resolution from single point intensity measurement. Based on the proposed methodology, results of few simulation and experimental investigations carried-out on metallic wires with diameters spanning the range of 5 to 50 mu m, are presented. The results show that proposed method is well-suited for high resolution on-line monitoring of ultrathin wire diameters, extensively used in micro-mechanics and semiconductor industries, where the conventional diffraction-based methods fail to produce accurate results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The variation of the viscosity as a function of the sequence distribution in an A-B random copolymer melt is determined. The parameters that characterize the random copolymer are the fraction of A monomers f, the parameter lambda which determines the correlation in the monomer identities along a chain and the Flory chi parameter chi(F) which determines the strength of the enthalpic repulsion between monomers of type A and B. For lambda>0, there is a greater probability of finding like monomers at adjacent positions along the chain, and for lambda<0 unlike monomers are more likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the phase diagram for the modified model has a binary fluid type transition for lambda>0 and does not exhibit a phase transition for lambda<0. A mode coupling analysis is used to determine the renormalization of the viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the dissipative nature of the coupling. there are nonlinearities both in the transport equation and in the noise correlation. The concentration dependence of the transport coefficient presents additional difficulties in the formulation due to the Ito-Stratonovich dilemma, and there is some ambiguity about the choice of the concentration to be used while calculating the noise correlation. In the Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the calculation of the transport coefficient, when coupled with a causal discretization scheme, provides a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This functional integral formalism is used in the present analysis, and consistency is verified for the present problem as well. The upper critical dimension for this type of renormaliaation is 2, and so there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there is a systematic dependence of the viscosity on lambda and chi(F). The fluctuations tend to increase the viscosity for lambda<0, and decrease the viscosity for lambda>0, and an increase in chi(F) tends to decrease the viscosity. (C) 1996 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the absence of interlogs, building docking models is a time intensive task, involving generation of a large pool of docking decoys followed by refinement and screening to identify near native docking solutions. This limits the researcher interested in building docking methods with the choice of benchmarking only a limited number of protein complexes. We have created a repository called dockYard (http://pallab.serc.iisc.ernet.in/dockYard), that allows modelers interested in protein-protein interaction to access large volume of information on protein dimers and their interlogs, and also download decoys for their work if they are interested in building modeling methods. dockYard currently offers four categories of docking decoys derived from: Bound (native dimer co-crystallized), Unbound (individual subunits are crystallized, as well as the target dimer), Variants (match the previous two categories in at least one subunit with 100% sequence identity), and Interlogs (match the previous categories in at least one subunit with >= 90% or >= 50% sequence identity). The web service offers options for full or selective download based on search parameters. Our portal also serves as a repository to modelers who may want to share their decoy sets with the community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article provides a detailed computational analysis of the reaction of dense nanofilms and the heat transfer characteristics on a composite substrate. Although traditional energetic compounds based on organic materials have similar energy per unit weight, non-organic material in nanofilm configuration offers much higher energy density and higher flame speed. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The numerical analysis of the thermal transport of the reacting film deposited on the substrate combined a hybrid approach in which a traditional two-dimensional black box theory was used in conjunction with the sandwich model to estimate the appropriate heat flux on the substrate accounting for the heat loss to the surroundings. A procedure to estimate this heat flux using stoichiometric calculations is provided. This work highlights two important findings. One is that there is very little difference in the temperature profiles between a single substrate of silica and a composite substrate of silicon silica. Secondly, with increase in substrate thickness, the quenching effect is progressively diminished at a given speed. These findings show that the composite substrate is effective and that the average speed and quenching of flames depend on the thickness of the silica substrate, and can be controlled by a careful choice of the substrate configuration. (C) 2011 Elsevier Ltd. All rights reserved.