304 resultados para Precipitation (chemical)
Resumo:
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.
Resumo:
The photochemistry and photophysics of organic molecules in organized assemblies are being studied with great interest in order to understand the features controlling the selectivity in the photoreactions brought about by these media.l These studies have paved the way to an intriguing number of possibilities by which photoreactivity can be modified. In this connection, we have investigated the photobehavior of a number of phenyl alkyl ketones and cu,cu-dimethylphenyl alkyl ketones (Scheme I) incorporated in the hydrophobic interior of cyclodextrin cavities.
Resumo:
Ricinus communis agglutinin was subjected to various chemical treatments and the effect on its hemagglutinating and saccharide-binding properties was studied. Acetylation, succinylation and citraconylation led to a complete loss in the activity of the agglutinin, whereas reductive methylation had no effect on the activity, showing that charged amino groups were involved in the hemagglutinating and saccharide-binding activity of Ricinus agglutinin. Modification of tryptophyl, arginyl and carboxyl-group-containing residues did not lead to any loss in the activity of the agglutinin. Acetylation of tyrosyl groups with N-acetylimidazole strongly reduced the hemagglutinating and saccharide-binding property of Ricinus agglutinin. The loss in activity was restored on deacetylation of the tyrosyl groups. Modification of tyrosyl residues also led to a change in the immunological properties of the agglutinin. The initial rate of modification of tyrosyl and amino groups and the concomitant loss of activity was reduced in the presence of lactose.
Resumo:
A correlation has been established between the heat of depolymerization (DeltaH) of vinyl polymers for going from solid polymer state to gaseous monomer state and the activation energy (E) of degradation. On this basis it has been shown that the rate controlling step in the degradation lies in the initiation step. Attempt has been made to correlate theE and DeltaH with glass transition temperature (Tg) and melting temperature (Tm) of the polymers.[/ p]
Resumo:
The accessibility of methionines in RNAase A to reaction with OBQ has been studied at highly acidic pH. The differences between the rate constants of reactions of the methionine and methionines of RNAase A with OBQ is a reflection on the limited accessibility of methionines in the protein conformation. Nevertheless, at sufficiently high OBQ concentration, all the four methionines of the enzyme can be modified. At lower concentration of OBQ, a derivative may be prepared in which a specific methionine is modified. The introduced chromophore ionizes at around pH 3 in this derivative. The derivative has partial activity towards RNA which is enhanced on addition of S-protein.
Resumo:
Thermal decomposition of Ca(OH)2 with and without additives has been experimentally investigated for its application as a thermochemical energy storage system. The homogeneous reaction model gives a satisfactory fit for the kinetic data on pure and Ni(OH)2---, Zn(OH)2--- and Al(OH)3---doped Ca(OH)2 and the order of reaction is 0.76 in all cases except for the Al(OH)3-doped sample for which the decomposition is zero order. These additives are shown not only to enhance the reaction rate but also to reduce the decomposition temperature significantly. Some models for solid decomposition reactions, and possible mechanisms in the decomposition of solids containing additives, are also discussed.
Resumo:
A chitooligosaccharide specific lectin (Luffa acutangula agglutinin) has been purified from the exudate of ridge gourd fruits by affinity chromatography on soybean agglutininglycopeptides coupled to Sepharose-6B. The affinity purified lectin was found homogeneous by polyacrylamide gel electrophoresis, in sodium dodecyl sulphate-polyacrylamide gels, by gel filtration on Sephadex G-100 and by sedimentation velocity experiments. The relative molecular weight of this lectin is determined to be 48,000 ± 1,000 by gel chromatography and sedimentation equilibrium experiments. The sedimentation coefficient (S20, w) was obtained to be 4·06 S. The Stokes’ radius of the protein was found to be 2·9 nm by gel filtration. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis the lectin gave a molecular weight of 24,000 in the presence as well as absence of 2-mercaptoethanol. The subunits in this dimeric lectin are therefore held by non-covalent interactions alone. The lectin is not a glycoprotein and circular dichroism spectral studies indicate that this lectin has 31% α-helix and no ß-sheet. The lectin is found to bind specifically to chitooligosaccharides and the affinity of the lectin increases with increasing oligosaccharide chain length as monitored by near ultra-violetcircular dichroism and intrinsic fluorescence titration. The values of ΔG, ΔΗ and ΔS for the binding process showed a pronounced dependence on the size of the oligosaccharide. The values for both ΔΗ and ΔS show a significant increase with increase in the oligosaccharide chain length showing that the binding of higher oligomers is progressively more favoured thermodynamically than chitobiose itself. The thermodynamic data is consistent with an extended binding site in the lectin which accommodates a tetrasaccharide. Based on the thermodynamic data, blue shifts and fluorescence enhancement, spatial orientation of chitooligosaccharides in the combining site of the lectin is assigned.
Resumo:
An analysis of gas absorption accompanied by chemical reaction in the presence of interfacial resistance is presented. The analysis indicates that the effect of interfacial resistance on interphase mass transfer is significantly higher in presence of a reaction compared to the pure absorption case. For fixed values of surface resistance and contact time, the difference between the amount of gas transferred across the interface with and without surface resistance increases as the value of reaction velocity increases. For ranges of contact time and surface resistance of practical relevance, the influence of surface resistance is too high to be neglected while designing gas-liquid contactors.
Resumo:
A simple yet fairly accurate method of calculating the ideal detonation velocity of an organic explosive from a knowledge of the chemical composition alone is proposed. The method is based on the concept that the energetics of a stoichiometrically balanced fuel-oxidizer system is a function of the total oxidizing or reducing valences of the composition. A combination of the valences in the form of Image , where R and P are, respectively, the reducing and oxidizing valences and MW is the molecular weight, has been found to be linearly related to the detonation velocity of the expolosive. The predicting capacity of the method has been found to be superior to other methods in the literature.
Resumo:
On the basis of dodecahedral structure of a foam bed, a model to predict conversion in a foam bed contactor with mass transfer with chemical reaction has been developed. To verify the proposed model, experiments have been carried out in a semi-batch apparatus for the absorption of lean CO2 gas in a foam of sodium hydroxide solution. The proposed model predicts fairly well the experimentally found absorption values.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
X-ray absorption edge and X-ray photoelectron spectroscopic studies of As-Se glasses seem to support a chemical ordering model.
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.
Resumo:
The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.