206 resultados para Phase Transformation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Centred space vector PWM (CSVPWM) technique is popularly used for three level voltage source inverters. The reference voltage vector is synthesized by time-averaging of the three nearest voltage vectors produced by the inverter. Identifying the three voltage vectors, and calculation of the dwelling time for each vector are both computationally intensive. This paper analyses the process of PWM generation in CSVPWM. This analysis breaks up a three-level inverter into six different conceptual two level inverters in different regions of the fundamental cycle. Control of 3-level inverter is viewed as the control of the appropriate 2-level inverter. The analysis leads to a systematic simplification of the computations involved, finally resulting in a computationally efficient PWM algorithm. This algorithm exploits the equivalence between triangle comparison and space vector approaches to PWM generation. This algorithm does not involve any 3-phase/2-phase or 2-phase/3-phase transformation. This also does not involve any transformation from rectangular to polar coordinates, and vice versa. Further no evaluation of trigonometric functions is necessary. This algorithm also provides for the mitigation of DC neutral point unbalance, and is well suited to digital implementation. Simulation and experimental results are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blocks of 3Y-TZP were indented with conical diamond indenters. indentation caused tetragonal to monoclinic phase transformation in a subsurface. Of the cracks generated in the subsurface, radial and lateral cracks can be accounted for by a continuum model of the indented subsurface, built using a combination of the Boussinesq and blister stress fields. Additional ring, median and cone cracks were also observed. It is hypothesized that the latter are motivated by the reduction in blister strength or residual energy brought about by the material damage caused by the phase transformation. This damage reduces the load bearing capacity of the material progressively with increasing normal load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sintering of titanium in its high temperature beta phase was studied by isothermal dilatometry. The sintering shrinkage y did not follow the normal time exponent type of behaviour, instead being described by the equation y = Kt(m)/[1-(A+Bt)(2)], where m = 1.93 +/- 0.07, with an activation energy of 62-90 kJ mol(-1). A detailed analysis of these results, based on the 'anomalous' diffusion behaviour reported for beta titanium, is carried out. It is shown that the generation of a high density of dislocations during the alpha --> beta phase transformation, coupled with sluggish recovery at the sintering necks, enables sintering mass transport by pipe diffusion through dislocation cores from sources of matter within the particles to become dominant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercially available 3Y-TZP and Mg-PSZ flats mere abraded by a 150 degrees diamond cone at -196 degrees, 25 degrees, 200 degrees, and 400 degrees C. The coefficient of friction, the track width, and the morphological features of the track were recorded. Raman spectroscopy mas used to record the tetragonal-to-monoclinic phase transformation (t --> m) as a function of distance away from the track. The study was undertaken to establish the influence of tangential traction on phase transformation and surface damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanometric granular materials represent a new class of materials with significant promise. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. These materials show many interesting properties which include structural, magnetic and transport properties, The phase transformation of the embedded particles shows distinctive behavior and yields new insight. We shall first highlight the strategy of synthesis of these materials through rapid solidification. This will be followed by three examples where the nanoscale dimension of the embedded particles play a unique role. These are melting and solidification of the nanodispersed embedded particles and the superconducting transition. (C) 1997 Elsevier Science S.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoindentation tests were carried out at different locations in a Ti rich NiTi film deposited on a 3 `' silicon wafer by dc magnetron sputtering. The purpose of doing nanoindentation at different locations was to check the uniformity of the sample with respect to its mechanical behaviour and shape memory effect. The results showed that elastic modulus and hardness measured by nanoindentation was similar at different locations in the 3 `' wafer. Nanoindcntation coupled with depth profiling of residual indents using AFM also showed that the extent of shape memory recovery obtained by heating the film above its martensite to austcnite phase transformation temperature was also similar at different locations in the 3 `' wafer. However, the measured recovery ratio was lower than that predicted from theoretical calculations for indents made using Berkovich indenter. The results showed that the deposition process resulted in a NiTi film with uniform composition, mechanical properties and shape memory behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, the beta transus of boron-modified Ti-6Al-4V alloy was found to be almost equivalent to that of the normal alloy, although there is a difference in interstitial element content large enough to produce significant change. Compositional analysis confirms the scavenging ability of the boride particles that are present in the microstructure toward the interstitial elements. This factor can successfully retard the alpha -> beta phase transformation locally and increase the overall beta transus of boron-added material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Shape Memory Alloy (SMA) wire reinforced composite shell structure is analyzed for self-healing characteristic using Variational Asymptotic Method (VAM). SMA behavior is modeled using a onedimensional constitutive model. A pre-notched specimen is loaded longitudinally to simulate crack propagation. The loading process is accompanied by martensitic phase transformation in pre-strained SMA wires, bridging the crack. To heal the composite, uniform heating is required to initiate reverse transformation in the wires and bringing the crack faces back into contact. The pre-strain in the SMA wires used for reinforcement, causes a closure force across the crack during reverse transformation of the wires under heating. The simulation can be useful in design of self-healing composite structures using SMA. Effect of various parameters, like composite and SMA material properties and the geometry of the specimen, on the cracking and self-healing can also be studied.