83 resultados para PASS
Resumo:
The paper presents an adaptive Fourier filtering technique and a relaying scheme based on a combination of a digital band-pass filter along with a three-sample algorithm, for applications in high-speed numerical distance protection. To enhance the performance of above-mentioned technique, a high-speed fault detector has been used. MATLAB based simulation studies show that the adaptive Fourier filtering technique provides fast tripping for near faults and security for farther faults. The digital relaying scheme based on a combination of digital band-pass filter along with three-sample data window algorithm also provides accurate and high-speed detection of faults. The paper also proposes a high performance 16-bit fixed point DSP (Texas Instruments TMS320LF2407A) processor based hardware scheme suitable for implementation of the above techniques. To evaluate the performance of the proposed relaying scheme under steady state and transient conditions, PC based menu driven relay test procedures are developed using National Instruments LabVIEW software. The test signals are generated in real time using LabVIEW compatible analog output modules. The results obtained from the simulation studies as well as hardware implementations are also presented.
Resumo:
A built-in-self-test (BIST) subsystem embedded in a 65-nm mobile broadcast video receiver is described. The subsystem is designed to perform analog and RF measurements at multiple internal nodes of the receiver. It uses a distributed network of CMOS sensors and a low bandwidth, 12-bit A/D converter to perform the measurements with a serial bus interface enabling a digital transfer of measured data to automatic test equipment (ATE). A perturbation/correlation based BIST method is described, which makes pass/fail determination on parts, resulting in significant test time and cost reduction.
Resumo:
The purpose of life is to obtain knowledge, use it to live with as much satisfaction as possible, and pass it on with improvements and modifications to the next generation.'' This may sound philosophical, and the interpretation of words may be subjective, yet it is fairly clear that this is what all living organisms--from bacteria to human beings--do in their life time. Indeed, this can be adopted as the information theoretic definition of life. Over billions of years, biological evolution has experimented with a wide range of physical systems for acquiring, processing and communicating information. We are now in a position to make the principles behind these systems mathematically precise, and then extend them as far as laws of physics permit. Therein lies the future of computation, of ourselves, and of life.
Resumo:
Chronic recording of neural signals is indispensable in designing efficient brain–machine interfaces and to elucidate human neurophysiology. The advent of multichannel micro-electrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system can vary over time due to change in electrode–neuron distance and background noise. We propose a neural amplifier in UMC 130 nm, 1P8M complementary metal–oxide–semiconductor (CMOS) technology. It can be biased adaptively from 200 nA to 2 $mu{rm A}$, modulating input referred noise from 9.92 $mu{rm V}$ to 3.9 $mu{rm V}$. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier and obviates the need of large input capacitance. The amplifier achieves a noise efficiency factor of 2.58. The amplifier can pass signal from 5 Hz to 7 kHz and the bandwidth of the amplifier can be tuned for rejecting low field potentials (LFP) and power line interference. The amplifier achieves a mid-band voltage gain of 37 dB. In vitro experiments are performed to validate the applicability of the neural low noise amplifier in neural recording systems.
Resumo:
We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.
Resumo:
A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using nonthermal-plasma (pulsed electrical-discharge plasma)-promoted catalytic process. In this paper, the filtered exhaust from the diesel engine is made to pass through a combination of nonthermal plasma reactor and a catalytic reactor connected in series. This combination is referred to as cascade. Two types of cascaded systems were studied. In one type, the plasma treating filtered exhaust was cascaded with a reduction catalyst V2O5/TiO2 using ammonia as reducing agent, and in the other type, the plasma treating filtered exhaust was cascaded with activated-alumina catalyst without any additive. Improved NOx-removal performance of both the cascaded processes and the role of nonthermal plasma in promoting catalysis are explained. Along with the NOx, total hydrocarbon and aldehydes were also removed. Furthermore, experiments were conducted at different temperatures and engine-loading conditions.
Resumo:
This paper presents a modified cellulose acetate membrane prepared using a dry casting technique that can be used to perform lysis of erythrocytes and isolation of hemoglobin. Isolation of hemoglobin is thus achieved without the use of lysis buffers. Cellulose acetate (CA) membranes are embedded with ammonium chloride (NH4Cl) and potassium bicarbonate (KHCO3), which act as lysing agents. The presence of embedded salts is confirmed using EDS analysis. The pores in the CA membrane act as filters. The average pore size in these membranes is designed to be 1.5 mu M, as characterized by SEM analysis, so that they allow hemoglobin to pass through and block all other cells and unlysed erythrocytes present in blood. When a drop of blood is added to the membrane, the NH4Cl and KHCO3 embedded in the membrane dissolve in plasma and lyse the erythrocytes. The filtered hemoglobin is characterized using UV-Vis Spectroscopy. The results indicate extraction of higher concentration of hemoglobin compared with conventional methods.
Resumo:
The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 degrees C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (similar to 200-300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pass ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.
Resumo:
We propose a generic three-pass key agreement protocol that is based on a certain kind of trapdoor one-way function family. When specialized to the RSA setting, the generic protocol yields the so-called KAS2 scheme that has recently been standardized by NIST. On the other hand, when specialized to the discrete log setting, we obtain a new protocol which we call DH2. An interesting feature of DH2 is that parties can use different groups (e.g., different elliptic curves). The generic protocol also has a hybrid implementation, where one party has an RSA key pair and the other party has a discrete log key pair. The security of KAS2 and DH2 is analyzed in an appropriate modification of the extended Canetti-Krawczyk security model.
Resumo:
Design of a dual band pass filter employing microstrip line with defected ground is presented in this paper. A dual band filter at 2.45GHz and 3.5GHz (covering WLAN and WiMAX) with 6% bandwidth has been designed at each frequency. Apertures in ground plane were used to improve the stop band rejection characteristics and coupling levels in the filter. Measured results of the experimental filter were compared against the simulation results for the purpose of validation.
Resumo:
Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and in elucidating human neurophysiology. The advent of multichannel microelectrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system is limited by background system noise which varies over time. We propose a neural amplifier in UMC 130 nm, 2P8M CMOS technology. It can be biased adaptively from 200 nA to 2 uA, modulating input referred noise from 9.92 uV to 3.9 uV. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. The amplifier can pass signal from 5 Hz to 7 kHz while rejecting input DC offsets at electrode-electrolyte interface. The bandwidth of the amplifier can be tuned by the pseudo-resistor for selectively recording low field potentials (LFP) or extra cellular action potentials (EAP). The amplifier achieves a mid-band voltage gain of 37 dB and minimizes the attenuation of the signal from neuron to the gate of the input transistor. It is used in fully differential configuration to reject noise of bias circuitry and to achieve high PSRR.
Resumo:
A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.
Resumo:
The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.