215 resultados para Nickel-cadmium batteries
Resumo:
P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.
Resumo:
p-Aminobenzoate ion intercalated alpha-hydroxides of nickel/cobalt were synthesized by precipitation using ammonia (pH = similar to 12). Aqueous colloidal suspension of alpha-hydroxide of nickel/cobalt was obtained on washing the precipitate as the pH was reduced to similar to 7. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to exfoliation and colloidal suspension of monolayers in water. While theb layers could be restacked from the colloidal suspension in the presenceof other anions in the case of alpha-cobalt hydroxide, the exfoliation could not be reversed easily in the case of the nickel analog. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.
Resumo:
We investigate the growth kinetics of CdS nanocrystals in the quantum confinement regime using time-resolved small-angle X-ray scattering. In contrast to earlier reports for similar systems, we establish that the growth kinetics in this case follows the Lifshitz-Slyozov-Wagner theory, for not only growth of the average diameter of the nanocrystals but also the time dependence of the size distribution and the temperature dependence of the rate constant. This is the first rigorous example of the coarsening process in the quantum confinement (< 5 nm)regime. Ab initio studies for the reaction pathways provide a microscopic understanding of this finding.
Resumo:
Hydrothermal treatment of a slurry of badly crystalline (beta(bc)) nickel hydroxide at different temperatures (65-170 degrees C) results in the progressive ordering of the structure by the step-wise elimination of disorders. Interstratification is eliminated at 140 degrees C, while cation vacancies are eliminated at 170 degrees C. A small percentage of stacking faults continue to persist even in `crystalline' samples. Electrochemical investigations show that the crystalline nickel hydroxide has a very low (0.4 e/Ni) reversible charge storage capacity. An incidence of at least 15% stacking faults combined with cation vacancies is essential for nickel hydroxide to perform close to its theoretical (1 e/ Ni) discharge capacity. (c) 2005 The Electrochemical Society.
Resumo:
The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.
Resumo:
1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.
Resumo:
Superplastic materials exhibit very large elongations to failure,typically >500%, and this enables commercial forming of complex shaped components at slow strain rates of similar to 10(-4) s(-1). We report extraordinary record superplastic elongations to failure of up to 5300% at both high strain rates and low temperature in electrodeposited nanocrystalline Ni and some Ni alloys. Superplasticity is not related to the presence of sulfur or a low melting phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A detailed study of nickel-monoethanolamine complexes has been made employing potentiometric and spectrophotometric methods. The conditions for the formation of mono as well as polynuclear complexes have been investigated by potentiometric method. Evidence is presented for the formation of the following complexes and their stability constants are determined: NiA2+, Ni22+, Ni32+, NiA42+, NiA52+, NiA22+, Ni2A24+ and Ni3A36+. Combining potentiometric data with the spectrophotometric data, absorption spectra of the pure mononuclear complexes NiA2+ to NiA42+ and NiA2+6 have been computed. The absorption spectrum of NiA2+6 has been discussed on the basis of ligand field and molecular orbital theories. The absorption spectra of intermediate complexes have been interpreted on the basis of average ligand field theory. There has been good agreement between the experimental (10,400 cm-1) value of 10 Dq of NiA2+6 and the calculated value of 10 Dq (11,400 cm-1) on the basis of M.O. theory.