55 resultados para Moduli of smoothness
Resumo:
The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15 degrees, and zero for zigzag (0 degrees) and armchair (30 degrees) configurations. (C) 2014 AIP Publishing LLC.
Resumo:
A detailed diffusion study was carried out on Cu(Ga) and Cu(Si) solid solutions in order to assess the role of different factors in the behaviour of the diffusing components. The faster diffusing species in the two systems, interdiffusion, intrinsic and impurity diffusion coefficients, are determined to facilitate the discussion. It was found that Cu was more mobile in the Cu-Si system, whereas Ga was the faster diffusing species in the Cu-Ga system. In both systems, the interdiffusion coefficients increased with increasing amount of solute (e.g. Si or Ga) in the matrix (Cu). Impurity diffusion coefficients for Si and Ga in Cu, found out by extrapolating interdiffusion coefficient data to zero composition of the solute, were both higher than the Cu tracer diffusion coefficient. These observed trends in diffusion behaviour could be rationalized by considering: (i) formation energies and concentration of vacancies, (ii) elastic moduli (indicating bond strengths) of the elements and (iii) the interaction parameters and the related thermodynamic factors. In summary, we have shown here that all the factors introduced in this paper should be considered simultaneously to understand interdiffusion in solid solutions. Otherwise, some of the aspects may look unusual or even impossible to explain.
Resumo:
The goal of this study is to investigate the applicability of different constitutive models for silicone networks using comprehensive multiaxial experimental tests, including non-equibiaxial mechanical tests which introduce differential constraints on the networks in the two orthogonal directions, on samples prepared using various crosslinking densities. Uniaxial stress-strain experiments show that a decrease in crosslinker amounts used in the preparation of silicone networks lead to more compliant material response as compared to that obtained using higher amounts of crosslinker. Biaxial data were used to obtain fits to the neo- Hookean, Mooney-Rivlin, Arruda-Boyce and the Edward-Vilgis slip-link constitutive models. Our results show that the slip-link model, based on separation of the individual contributions of chemical crosslinks and physical entanglements, is better at describing the stress-strain response of highly crosslinked networks at low stretches as compared to other constitutive models. Modulus obtained using the slip-link model for highly crosslinked networks agrees with experimentally determined values obtained using uniaxial tension experiments. In contrast, moduli obtained using coefficients to the other constitutive models underpredict experimentally determined moduli by over 40 %. However, the slip-link model did not predict the experimentally observed stiffening response at higher stretches which was better captured using the Arruda-Boyce model.
Resumo:
Conducting polymers have the combined advantages of metal conductivity with ease in processing and biocompatibility; making them extremely versatile for biosensor and tissue engineering applications. However, the inherent brittle property of conducting polymers limits their direct use in such applications which generally warrant soft and flexible material responses. Addition of fillers increases the material compliance, but is achieved at the cost of reduced electrical conductivity. To retain suitable conductivity without compromising the mechanical properties, we fabricate an electroactive blend (dPEDOT) using low grade PEDOT: PSS as the base conducting polymer with polyvinyl alcohol as filler and glycerol as a dopant. Bulk dPEDOT films show a thermally stable response till 110 degrees C with over seven fold increase in room temperature conductivity as compared to 0.002 S cm(-1) for pristine PEDOT: PSS. We characterize the nonlinear stress-strain response of dPEDOT, well described using a Mooney-Rivlin hyperelastic model, and report elastomer-like moduli with ductility similar to fives times its original length. Dynamic mechanical analysis shows constant storage moduli over a large range of frequencies with corresponding linear increase in tan(delta). We relate the enhanced performance of dPEDOT with the underlying structural constituents using FTIR and AFM microscopy. These data demonstrate specific interactions between individual components of dPEDOT, and their effect on surface topography and material properties. Finally, we show biocompatibility of dPEDOT using fibroblasts that have comparable cell morphologies and viability as the control, which make dPEDOT attractive as a biomaterial.
Resumo:
The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.
Effect of oxygen vacancies on the elastic properties of zinc oxide: A first-principles investigation
Resumo:
The effect of oxygen vacancies on the elastic properties of zinc oxide (ZnO) is examined using first-principles calculations based on density functional theory. Formation energies of vacancies in different types of oxygen deficient structures were analyzed to ascertain their stability. This analysis reveals that the doubly-charged oxygen vacancy under zinc-rich growth conditions is the most stable. Results show considerable degradation of some of the elastic moduli due to the presence of oxygen vacancies, which is in agreement with recent experiments. The decrease observed in elastic constants is more pronounced with increase in vacancy concentration. Further, the charge state of the defect structure was found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.
Resumo:
We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.