202 resultados para Maximum independent set
Resumo:
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Resumo:
We consider an enhancement of the credit risk+ model to incorporate correlations between sectors. We model the sector default rates as linear combinations of a common set of independent variables that represent macro-economic variables or risk factors. We also derive the formula for exact VaR contributions at the obligor level.
Resumo:
The asymmetric unit of the title compound, C17H14O4, contains two independent molecules which differ in the relative orientations of the phenyl rings with repect to the essentially planar [maximum deviations of 0.029 (2) and 0.050 (2) angstrom in the two molecules] chromene fused-ring system, forming dihedral angles of 10.3 (5) and 30.86 (5)degrees in the two molecules. The crystal structure is stabilized by weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions, and pi-pi stacking interactions.
Resumo:
A new approach is proposed to solve for the growth as well as the movement of hydrogen bubbles during solidification in aluminum castings. A level-set methodology has been adopted to handle this multiphase phenomenon. A microscale domain is considered and the growth and movement of hydrogen bubbles in this domain has been studied. The growth characteristics of hydrogen bubbles have been evaluated under free growth conditions in a melt having a hydrogen input caused b solidification occurring around the microdomain.
Resumo:
This paper describes an algorithm to compute the union, intersection and difference of two polygons using a scan-grid approach. Basically, in this method, the screen is divided into cells and the algorithm is applied to each cell in turn. The output from all the cells is integrated to yield a representation of the output polygon. In most cells, no computation is required and thus the algorithm is a fast one. The algorithm has been implemented for polygons but can be extended to polyhedra as well. The algorithm is shown to take O(N) time in the average case where N is the total number of edges of the two input polygons.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.
Resumo:
In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.
Resumo:
Proton spin lattice relaxation (T1) in (CH3)4NCdBr3 at different Larmor frequencies (10, 20 and 30 MHz) has been studied in the temperature range 77 to 400 K. The variations in T1 at high temperature are independent of frequency and show a maximum due to spin rotation- interaction. The other features are interpreted as being due to isotropic tumbling of the tetramethylammonium ion and random reorientation of the CH3 group. The CW spectrum remained narrow up to 77 K and develops a wing structure at low temperatures. This observation is attributed to a possible tunnelling motion of the CH3 group, which has rather low activation energy as demonstrated by the study of T1.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V, E). The expected running time of our algorithm is (O) over tilde (mc) where vertical bar E vertical bar = m and c is the maximum u-v edge connectivity, where u, v is an element of V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n - 1; so the expected run-ning time of our algorithm for simple unweighted graphs is (O) over tilde (mn). All the algorithms currently known for constructing a Gomory-Hu tree [8, 9] use n - 1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest (O) over tilde (n(20/9)) max flow algorithm due to Karger and Levine[11] yields the current best running time of (O) over tilde (n(20/9)n) for Gomory-Hu tree construction on simple unweighted graphs with m edges and n vertices. Thus we present the first (O) over tilde (mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs. We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S subset of V can be reused for computing a minimum Steiner cut for certain Steiner sets S' subset of S.
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics
Resumo:
We study the performance of greedy scheduling in multihop wireless networks where the objective is aggregate utility maximization. Following standard approaches, we consider the dual of the original optimization problem. Optimal scheduling requires selecting independent sets of maximum aggregate price, but this problem is known to be NP-hard. We propose and evaluate a simple greedy heuristic. We suggest how the greedy heuristic can be implemented in a distributed manner. We evaluate an analytical bound in detail, for the special case of a line graph and also provide a loose bound on the greedy heuristic for the case of an arbitrary graph.
Resumo:
Recent axiomatic derivations of the maximum entropy principle from consistency conditions are critically examined. We show that proper application of consistency conditions alone allows a wider class of functionals, essentially of the form ∝ dx p(x)[p(x)/g(x)] s , for some real numbers, to be used for inductive inference and the commonly used form − ∝ dx p(x)ln[p(x)/g(x)] is only a particular case. The role of the prior densityg(x) is clarified. It is possible to regard it as a geometric factor, describing the coordinate system used and it does not represent information of the same kind as obtained by measurements on the system in the form of expectation values.
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.