70 resultados para MODIFIED IN-SITU PROCESSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel, user-friendly, and convenient method for the synthesis of trisubstituted thioureas of arylamines is presented, for the first time, using in situ generated dithiocarbamates of secondary amines. This strategy provides an excellent opportunity to access thioureas containing primary aryl amines. A non-isothiocyanate route to obtain thioureas is the advantage of this strategy, which may provide a useful route to synthesize a variety of biologically active derivatives of thioureas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sliding history in friction-induced material transfer of dry 2H-MoS2 particles in a sheared contact was studied. Video images in contact showed fragmentation of lubricant particles and build-up of a transfer film, and were used to measure the speed of fragmented particles in the contact region. Total internal reflection (TIR) Raman spectroscopy was used to follow the build-up of the MoS2 transfer film. A combination of in situ and ex situ analysis of the mating bodies revealed the thickness of the transfer film at steady state to be of the order of 35 nm on the ball surface and 15 nm on the flat substrate. Insights into the mechanism of formation of the transfer film in the early stages of sliding contact are deduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of steroid dimers (bile acid derivatives) linked through ester functionalities were synthesized, which gelled various aromatic solvents. The organogels formed by the three dimeric ester molecules showed birefringent textures and fibrous nature by polarizing optical microscopy and scanning electron microscopy, respectively. A detailed rheological study was performed to estimate the mechanical strengths of two sets of organogels. In these systems, the storage modulus varied in the range of 0.8-3.5 X 10(4) at 1% w/v of the organogelators. The exponents of scaling of the storage modulus and yield stress of the two systems agreed well with those expected for viscoelastic soft colloidal gels with fibrillar flocs. The nanofibers in the organogel were utilized to engineer gold nanoparticles of different sizes and shapes and generate new gel-nanoparticle hybrid materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ impedance spectroscopy of layer-by-layer self-assembly of weak polyelectrolytes is presented. Interdigitated capacitors with active area of 1×1 mm2 and electrode spacing of 5 μm are fabricated and used for this purpose. Measurement results indicate that the impedance decreases with increase in number of polyelectrolyte layers. About 2.5% of relative change in magnitude of impedance at 104.7 KHz is seen for four bi-layers of Poly(Allylamine Hydrochloride) (PAH)/Poly(Acrylic acid) (PAA). An electrical equivalent for polyelectrolyte binding is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of Metal Organic Chemical Vapor Deposition (MOCVD) grown group III-A nitride device stacks on Si (111) substrates is critically dependent on the quality of the first AlN buffer layer grown. A Si surface that is both oxide-free and smooth is a primary requirement for nucleating such layers. A single parameter, the AlN layer growth stress, is shown to be an early (within 50 nm), clear (<0.5 GPa versus > 1GPa), and fail-safe indicator of the pre-growth surface, and the AlN quality required for successful epitaxy. Grain coalescence model for stress generation is used to correlate growth stress, the AlN-Si interface, and crystal quality. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ approach involving a simple mix and shake method for testing the enantiopurity of primary, secondary and tertiary chiral amines and their derivatives, chiral amino alcohols, by H-1-NMR spectroscopy is developed. The protocol involves the in situ formation of chiral ammonium borate salt from a mixture of C-2 symmetric chiral BINOL, trialkoxyborane and chiral amines. The proposed concept was demonstrated convincingly on a large number of chiral and pro-chiral amines and amino alcohols, and also aids the precise measurement of enantiomeric excess. The protocol can be completed in a couple of minutes directly in the NMR sample tube, without the need for any physical separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 degrees C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites. (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ carbon-grafted alkaline iron electrode prepared from the active material obtained by decomposing the alpha-FeC2O4 center dot 2H(2)O-polyvinyl alcohol (PVA) composite at 600 degrees C in a vacuum is reported. The active material comprises a mixture of a-Fe and Fe3O4 with the former as the prominent component. A specific discharge capacity in excess of 400 mA h g(-1) at a current density of 100 mA g(-1) is obtained with a faradaic efficiency of 80% for the iron electrode made from carbon-grafted active material (CGAM). The enhanced performance of the alkaline iron electrode is attributed to the increased amount of metallic iron in the active material and its concomitant in situ carbon grafting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although ultrathin Au nanowires (similar to 2 nm diameter) are expected to demonstrate several interesting properties, their extreme fragility has hampered their use in potential applications. One way to improve the stability is to grow them on substrates; however, there is no general method to grow these wires over large areas. The existing methods suffer from poor coverage and associated formation of larger nanoparticles on the substrate. Herein, we demonstrate a room temperature method for growth of these nanowires with high coverage over large areas by in situ functionalization of the substrate. Using control experiments, we demonstrate that an in situ functionalization of the substrate is the key step in controlling the areal density of the wires on the substrate. We show that this strategy works for a variety of substrates ranging like graphene, borosil glass, Kapton, and oxide supports. We present initial results on catalysis using the wires grown on alumina and silica beads and also extend the method to lithography-free device fabrication. This method is general and may be extended to grow ultrathin Au nanowires on a variety of substrates for other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 mu l was quantified in situ as a function of applied voltage from 10 to 90 V in a series of 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that copper-matrix composites that contain 20 vol. % of an in situ processed, polymer-derived, ceramic phase constituted from Si-C-N have unusual friction-and-wear properties. They show negligible wear despite a coefficient of friction (COF) that approaches 0.7. This behavior is ascribed to the lamellar structure of the composite such that the interlamellar regions are infused with nanoscale dispersion of ceramic particles. There is significant hardening of the composite just adjacent to the wear surface by severe plastic deformation.