207 resultados para MELT POINT
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
In this paper, we solve the distributed parameter fixed point smoothing problem by formulating it as an extended linear filtering problem and show that these results coincide with those obtained in the literature using the forward innovations method.
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
It is virtually impossible to produce castings free from internal stresses using conventional methods of founding. Castings with appreciable stresses distort during storage, transportation, machining and service. Though composition and melt treatment are known to affect the magnitude of residual stress in castings, the data on the effect of carbon equivalent and inoculation on the magnitude of residual stress in castings are limited. In the present investigation, an attempt is made to study (i) the effect of carbon equivalent on residual stress in cast iron castings, and (ii) the effect of inoculants such as calcium silicide and ferrosilicon on residual stress in iron castings in the carbon equivalent range 3.0–4.0%. The results of the investigation indicate the following: (i) the residual strains decrease linearly with increase in carbon equivalent in the uninoculated and inoculated irons; (ii) the tensile residual stresses decrease linearly with increase in carbon equivalent value of the uninoculated, calcium silicide-inoculated and ferrosilicon-inoculated cast iron castings; (iii) the ratio of UTS to residual stress increased on inoculating the grid castings. This increase is higher for calcium silicide-inoculated grids than for ferrosilicon-inoculated grid castings. This implies that from the residual stress point of view, inoculation of the iron with calcium silicide is beneficial.
Resumo:
Practical applications of vacuum as an insulator necessitated determining the low-pressure breakdown characteristics of long gap lengths of a point-plane electrode system. The breakdown voltage has been found to vary as the square root of the gap length. Further, with the point electrode as the anode, the values of the breakdown voltages obtained have been found to be larger than those obtained with a plane-parallel electrode system at a corresponding gap length. By applying the theory of the anode heating mechanism as the cause for breakdown, the results have been justified, and by utilizing a field efficiency factor which is the ratio of the average to maximum field, an empirical criterion has been developed. This criterion helps in calculating the breakdown voltage of a nonuniform gap system by the knowledge of the breakdown voltage of a plane-parallel electrode system.
Resumo:
Protein-protein interactions play a Crucial role in Virus assembly and stability. With the view of disrupting capsid assembly and capturing smaller oligomers, interfacial residue mutations were carried Out in the coat protein gene of Sesbania Mosaic Virus, a T=3 ss (+) RNA plant virus. A single point mutation of a Trp 170 present at the five-fold interface of the virus to a charged residue (Glu or Lys) arrested assembly of virus like particles and resulted in stable Soluble dimers of the capsid Protein. The X-ray crystal structure of one of the isolated dimer mutants - rCP Delta N65W170K was determined to a resolution of 2.65 angstrom. Detailed analysis of the dimeric mutant protein structure revealed that a number of Structural changes take place, especially in the loop and interfacial regions during the course of assembly. The isolated chiller was ``more relaxed'' than the dimer found in the T=3 or T=1 capsids. The isolated dimer does not bind Ca2+ ion and consequently four C-terminal residues are disordered. The FG loop, which interacts with RNA in the Virus, has different conformations in the isolated dimer and the intact Virus Suggesting its flexible nature and the conformational changes that accompany assembly. The isolated choler mutant was much less stable when compared to the assembled capsids, suggesting the importance of inter-subunit interactions and Ca2+ mediated interactions in the stability of the capsids. With this study, SeMV becomes the first icosahedral virus for which X-ray crystal Structures of T=3, T=1 capsids as well as a smaller oligomer of the capsid protein have been determined.
Resumo:
Abstract is not available.
Resumo:
The unsteady laminar incompressible boundary-layer flow near the three-dimensional asymmetric stagnation point has been studied under the assumptions that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is found that in contrast with the symmetric flow, the maximum heat transfer occurs away from the stagnation point due to the decrease in the boundary-layer thickness. The effect of the variation of the wall temperature with time on heat transfer is strong. The skin friction and heat transfer due to asymmetric flow only are comparatively less affected by the mass transfer as compared to those of symmetric flow.
Resumo:
A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.
Resumo:
We study diagonal estimates for the Bergman kernels of certain model domains in C-2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. Thisn condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range-roughly speaking-from being mildly infinite-type'' to very flat at the infinite-type points.
Resumo:
Restriction endonucleases (REases) protect bacteria from invading foreign DNAs and are endowed with exquisite sequence specificity. REases have originated from the ancestral proteins and evolved new sequence specificities by genetic recombination, gene duplication, replication slippage, and transpositional events. They are also speculated to have evolved from nonspecific endonucleases, attaining a high degree of sequence specificity through point mutations. We describe here an example of generation of exquisitely site-specific REase from a highly-promiscuous one by a single point mutation.
Resumo:
The coherent quantum evolution of a one-dimensional many-particle system after slowly sweeping the Hamiltonian through a critical point is studied using a generalized quantum Ising model containing both integrable and nonintegrable regimes. It is known from previous work that universal power laws of the sweep rate appear in such quantities as the mean number of excitations created by the sweep. Several other phenomena are found that are not reflected by such averages: there are two different scaling behaviors of the entanglement entropy and a relaxation that is power law in time rather than exponential. The final state of evolution after the quench is not characterized by any effective temperature, and the Loschmidt echo converges algebraically for long times, with cusplike singularities in the integrable case that are dynamically broadened by nonintegrable perturbations.