102 resultados para MATHEMATICAL-MODEL
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.
Resumo:
Void breaking and formation in a packed bed are important phenomena in stabilising and optimising the performance of reactors such as the blast furnace, spouted bed and catalytic regenerator. These phenomena have been studied using a mathematical model. The model is based on a previously published force balance approach to predict the cavity size. Limited numbers of experiments, at room temperature, have been carried out in order to compare the experimental results with theory. A good agreement has been found between the experimental and theoretical results. In addition, the predictions have been compared with published data, which give reasonable agreement. The role of various forces (friction, pressure and bed weight) on void initiation and breaking has been investigated. The effect of bed height, particle diameter and density, void fraction, as well as gas flow rate on void formation and breaking has also been studied.
Resumo:
There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.
Resumo:
The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.
Resumo:
The mathematical model developed by Hansen and Rattray based on Pritchard's equations for a coastal-plain estuary has been analysed to study the circulation and salinity distributions in coastal inlets with constant width and depth. Numerical solutions of the basic equations have been obtained without placing any restriction on Rayleigh numbers. A noteworthy contribution of the present analysis is that solutions of equations have been obtained for higher Rayleigh numbers, which was not possible in the earlier model. It is found that the effect of higher Rayleigh numbers is to increase the vertical advection, making the salinities in the upper and lower layers more uniform with a distinct halocline near the mid-depths. Solutions are discussed for some special cases of practical interest.
Resumo:
An ammonia loop heat pipe (LHP) with a flat plate evaporator is developed and tested. The device uses a nickel wick encased in an aluminum-stainless steel casing. The loop is tested for various heat loads and different sink temperatures, and it demonstrated reliable startup characteristics. Results with the analysis of the experimental observation indicate that the conductance between the compensation chamber and the heater plate can significantly influence the operating temperatures of the LHP. A mathematical model is also presented which is validated against the experimental observations.
Resumo:
A generalised formulation of the mathematical model developed for the analysis of transients in a canal network, under subcritical flow, with any realistic combination of control structures and their multiple operations, has been presented. The model accounts for a large variety of control structures such as weirs, gates, notches etc. discharging under different conditions, namely submerged and unsubmerged. A numerical scheme to compute and approximate steady state flow condition as the initial condition has also been presented. The model can handle complex situations that may arise from multiple gate operations. This has been demonstrated with a problem wherein the boundary conditions change from a gate discharge equation to an energy equation and back to a gate discharge equation. In such a situation the wave strikes a fixed gate and leads to large and rapid fluctuations in both discharge and depth.
Resumo:
A mathematical model is developed to describe the hydraircooling process when the water and air are flowing in the same direction. The governing equations for the simultaneous heat and mass transfer are solved using finite-difference numerical methods. The half cooling time of the food products is correlated as a function of the dimensionless process parameters. It is observed that a process time of approximately double the half cooling time will result in the food products attaining almost a steady state. The process times of the bulk hydraircooling process and the bulk air precooling process are compared.
Resumo:
The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.
Resumo:
Hydraircooling is a technique used for precooling food products. In this technique chilled water is sprayed over the food products while cold unsaturated air is blown over them. Hydraircooling combines the advantages of both air- and hydrocooling. The present study is concerned with the analysis of bulk hydraircooling as it occurs in a package filled with several layers of spherical food products with chilled water sprayed from the top and cold unsaturated air blown from the bottom. A mathematical model is developed to describe the hydrodynamics and simultaneous heat and mass transfer occurring inside the package. The non-dimensional governing equations are solved using the finite difference numerical methods. The results are presented in the form of time-temperature charts. A correlation is obtained to calculate the process time in terms of the process parameters.
Resumo:
Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.
Resumo:
The problem of estimating the three-dimensional rotational parameters of a rigid body from its monocular image data has been considered using the method of moment invariants. Second- and third-order moment invariants are used to construct the feature vector for the scale and orientation independent identification of the camera view axis direction in the body-fixed reference frame. The camera rotation angle about the view axis is derived from second-order central moments. The relative attitude of the rigid body is then expressed in terms of quaternion parameters to model the outputs of a video sensor in attitude control simulations. Experimental results and simulation outputs are presented using the mathematical model of a spacecraft.